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Ultrafast QuantumOptics with Spectral Resolution
Abstract

Optical photons are exceptional, reliable carriers of information and yet also excellent,
extremely sensitive probes of matter. The spectro-temporal degree of freedom (DoF) of
a photon plays an important role in these properties. In the context of emerging quan-
tum technologies and partially that of fundamental phenomena, this thesis explores the
spectral DoF of single-photon and single-photon level broadband light.

The thesis is based on a series of publications concerned with a relatively wide range
of problems in quantum and ultrafast optics. Photon-starved light in a temporal mode
of an ultrashort pulse (spectrally broadband) is the ”common denominator” of these
works. So is a unique measurement device developed and applied for the studies – a
very fast single-photon-sensitive camera. Its creation and characterization enabled or
greatly simplified many of the presented experiments. As a fairly universal scientific
tool, it still holds great potential for further applications.

The predominantly experimental work presented herein encompasses 5 studies. In
the first one, we characterize hybrid entanglement between the transverse and spectral
DoF for pairs of photons generated in a non-collinear type-I spontaneous paramet-
ric down-conversion process. The second study explores the two-photon interference
with spectrally-resolved single-photon detection, as a method to dispersively probe light-
matter interactions. In the third experiment, we turn from single photons to weak
coherent states (single-photon level) and demonstrate a variation of the electro-optic
shearing interferometry, albeit based on the second-order intensity correlation measure-
ment and particularly suitable for ultrashort pulses in the near-infrared. The fourth
study demonstrates an electro-optic single-photon-level-compatible ultrafast implemen-
tation of a coherent time-frequency transformation – Fractional Fourier Transform
which is of interest itself as a generalization of the ordinary Fourier Transform and
also constitutes an indispensable building block of the next experiment. In the final
part, we turn to the frequency-domain quantum metrology and demonstrate a spec-
tral super-resolution method motivated by the recent rapid developments in quantum-
inspired far-field super-resolution imaging techniques. The presented method can be
regarded as a frequency-domain implementation of the ideas of image-inversion inter-
ferometry. Compared with a spectral intensity measurement, it reduces the resources
required to estimate a separation between two spectral features.
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Ultraszybka Optyka Kwantowa z Rozdzielczością Spektralną
Streszczenie

Fotony w domenie optycznej stanowią wyjątkowe i niezawodne nośniki informacji, ale
również doskonałe i niezwykle czułe sondy materii. Czasowo-spektralny stopień swo-
body (StSw) fotonu odgrywa w tych własnościach istotną rolę. W kontekście rozwija-
jących się technologii kwantowych oraz po części w kontekście zjawisk fundamental-
nych niniejsza praca stanowi eksplorację spektralnego StSw szerokopasmowego światła
pojedyczno-fotonowego, oraz o natężeniu zbliżonym do pojedynczego fotonu.

Niniejsza praca jest oparta na serii publikacji omawiających stosunkowo szeroki za-
kres problemów optyki kwantowej i ultraszybkiej. Ultrasłabe światło o modzie cza-
sowym ultrakrótkiego impulsu (spektralnie szerokopasmowe) jest ”wspólnym mianown-
ikiem” tych prac. Jak również jest nim unikalne narzędzie pomiarowe w nich użyte
i dla nich stworzone – bardzo szybka kamera czuła na pojedyncze fotony. Jej opra-
cowanie i charakteryzacja umożliwiły lub znacznie uprościły wiele z przedstawionych
eksperymentów. Jako dosyć uniwersalne narzędzie badawcze, kamera ciągle ma duży
potencjał do dalszych zastosowań.

Prezentowane tutaj, w znacznej części doświadczalne, badania obejmują 5 prac. W
pierwszej z nich charakteryzujemy hybrydowe splątanie pomiędzy poprzecznym i spek-
tralnym StSw pary fotonów wygenerowanych w niekolinearnym procesie parametrycznego
podziału częstości typu I. Druga praca stanowi eksplorację interferencji dwufotonowej
z rozdzieloną-spektralnie detekcją pojedynczych fotonów, jako metody dyspersyjnego
próbkowania oddziaływań światło-materia. W trzecim eksperymencie przechodzimy od
pojedynczych fotonów do słabych stanów koherentnych (natężenie zbliżone do poje-
dynczego fotonu) i przedstawiamy wariant elektrooptycznej interferometrii ścinania, jed-
nakże opartej o pomiar korelacji natężeniowej drugiego rzędu i szczególnie dostosowanej
do ultrakrótkich impulsów w bliskiej podczerwieni. Czwarta praca ukazuje kompaty-
bilną z natężeniem zbliżonym do pojedynczego fotonu, elektrooptyczną, ultraszybką
implementację koherentnej czasowo-spektralnej transformacji – Cząstkowej Transfor-
maty Fouriera (CTF), która jest interesująca sama w sobie jako generalizacja zwykłej
Transformaty Fouriera, oraz stanowi nieodzowny element składowy kolejnego ekspery-
mentu. W ostatniej części przechodzimy do metrologi kwantowej w dziedzinie częstości
i demonstrujemy metodę nadrozdzielczości spektralnej umotywowaną intensywnym
w ostatnim czasie rozwojem kwantowo-inspirowanych metod daleko-polowego obra-
zowania nadrozdzielczego. Prezentowaną metodę można uznać za implementację idei
interferometrii inwersji obrazu. W porównaniu z pomiarem spektralnego natężenia re-
dukuje ona ilość wymaganych zasobów do estymacji separacji pomiędzy dwoma obiek-
tami spektralnymi.
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0
Introduction

Quantum optics studies the behavior and properties of individual quanta of light – pho-

tons. It is a branch of physics with a long tradition and at the same time undergoing rapid

development. Photons are not only very special to all of quantum physics, being one of the

motivations for the quantum theory itself [1], but they also exhibit unrivaled properties e.g.

for quantum communication and sensing. The ability to precisely engineer and transform

quantum states of light, their intrinsic robustness to the environment, well-understood and

controlled light-matter interactions, vast Hilbert space with numerous degrees of freedom
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that can be harnessed with photonic systems, or the plethora of fundamental quantum

phenomena that are most easily observed in the photonic domain, make photons truly re-

markable, versatile and worthwhile.

This thesis comprises results of the experimental work in quantum optics with broad-

band light and different forms of spectrally resolved detection, carried out in the Quantum

Optical Devices Laboratory since the year 2020. Quantum optics is a vast area of study and

in this spirit, we have studied a vast range of phenomena with different applications and

fundamental questions in mind. We will follow a chronological path through the 5 main

research articles that this thesis is based on.

Broadband light in our context refers to the use of light with a temporal structure of a

pulse from 100 fs to 10 ps in duration and with spectral bandwidths between 10 nm and

0.2 nm (ca. 100GHz at 800 nm). Three of our studies were enabled by the development

of a custom fast single-photon camera, which started around 2019 in the QuantumMem-

ories Laboratory. The device served us mostly as a fast single-photon spectrometer in the

near-infrared regime (800 nm). The remaining two experiments employ indirect meth-

ods of spectral resolution. Nevertheless, the characterization of dim classical or quantum

broadband light in the spectral degree of freedom remains a central theme of this work.

0.1 Quantum optics

At the beginning of the 20th century, Planck postulated quantized emission and absorp-

tion of light (”quantum of action”) to explain the spectrum of black-body radiation [2].

In 1905 Einstein associated the quantum of action with the electromagnetic (EM) field

and introduced photons [1]. The concept was further developed by Dirac [3] and Fermi

[4], creating the field of quantum electrodynamics which depicts the photon as a bosonic
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particle that mediates electromagnetic interactions.

Despite these early theoretical concepts, the first experimental works that can be consid-

ered the cradle of quantum optics had to wait another half a decade for the key technolog-

ical developments – creation of an ammonia MASER in the 1950s by Townes, Gordon,

and Zeiger [5] and a He-Ne laser byMaiman in the early 1960s [6]. The operation of these

instruments is based on the stimulated emission of photons frommatter with quantized

energy levels. As such, they are inherently quantum devices which led to the development

of a new field called quantum electronics. Nevertheless, quantum effects that could be ex-

perimentally observed with the aid of a laser were scarce and mainly limited to the photon

statistics and phase diffusion studies [7].

The existence of the photon was only experimentally confirmed in 1977 by Kimble et

al. observing the anti-bunching phenomenon [8]. Previous experiments could have been

interpreted with semi-classical theory assuming classical fields and quantized atoms. The

statistical light effects which cannot be described with classical theory, are still one of the

main interests in quantum optics.

Quantum optics provides an important toolbox in investigating fundamental phenom-

ena of quantummechanics such as complementarity or hidden variables and on the other

hand, constitutes a basis for powerful measurement techniques with sensitivities reaching

well beyond the standard quantum limits [9]. Quantum states of light are employed in se-

cure communication e.g. the quantum key distribution [10], quantum networks which are

the basis of entanglement-based protocols [11], and quantummetrology whose importance

is well demonstrated by the gravitational waves detectors [12].

3



0.2 Single photons

0.2.1 Photon as the creation operator

Quantization of the electromagnetic field is well described in numerous classic books on

quantum optics including refs. [7, 13–15] and as such will not be repeated here. Instead,

we briefly discuss the results and how a single photon can be understood in their terms.

Operators of the quantized electric and magnetic field obey equivalents of the Maxwell

wave equations. Here we shall limit the discussion to the electric field. In free space, the

operator of a quantized electric field takes the following decomposition in the plane-wave

basis [15]
⃗̂
E(r⃗, t) =

∑
k⃗,j

ϵ⃗k⃗,jEk⃗âk⃗,j exp
{
−iωkt+ i⃗k · r⃗

}
+H.c., (1)

where H.c. stands for the Hermitian conjugate, k⃗ is the wavevector, ϵ⃗k⃗,j denotes the unit

polarization vector, Ek⃗ is the amplitude of the k⃗ mode, j indexes one of the two possible

polarizations, ωk is the angular frequency corresponding to the wavevector k =
∣∣∣⃗k∣∣∣, spatial

coordinates are denoted by r⃗, while time is denoted by t. The operators âk⃗,j (â
†
k⃗,j
) are the

annihilation (creation) operators of a quantum harmonic oscillator obeying the commuta-

tion relations

[
âk⃗,j, âk⃗′,j′

]
= 0, (2)[

âk⃗,j, â
†
k⃗′,j′

]
= δk⃗k⃗′δjj′ . (3)

In this context, these operators correspond to the annihilation (creation) of a photon in a

given mode and with a given polarization. The Hamiltonian of the quantized EM field is
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given by

Ĥ =
∑
k⃗,j

ℏωk(
1

2
+ n̂k⃗,j) =

∑
k⃗

Ĥk⃗,j, (4)

where n̂k⃗,j = â†
k⃗,j
âk⃗,j is the operator of the number of photons in j polarization and mode

k⃗. Similarly, the operator of the total number of photons is given by

n̂ =
∑
k⃗,j

n̂k⃗,j (5)

For clarity, let us focus on a single polarization mode and drop the j index. The photon

number, or energy, eigenstates called Fock states
∣∣nk⃗1

, nk⃗2
, . . .

〉
correspond to a well-defined

number of photons in each mode. The most general pure state will be given as a linear

superposition of such eigenstates. Technically, a single photon in mode k⃗l is just such an

eigenstate describing a single excitation in mode k⃗l

|1⟩k⃗l ≡
∣∣∣nk⃗1

= 0, nk⃗2
= 0, . . . , nk⃗l−1

= 0, nk⃗l
= 1, . . . , nk⃗l+1

= 0, . . .
〉
. (6)

It can be also written as the action of a creation operator on the vacuum state (i.e. a state

with no photons)

|1⟩k⃗l = â†
k⃗l
|vac⟩ . (7)

0.2.2 Wave packets

While monochromatic plane waves are a convenient idealization, they carry an implicit

assumption of being unbound in space and time. All experimentally attainable states will

be in the form of wave packets in space and time, although a monochromatic plane wave

can be an excellent approximation in certain cases.
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Here we shall assume paraxial propagation which is justified by a well-defined optical axis

and the low numerical apertures of the experimental setups we will discuss. Let us decom-

pose the wavevector of any mode

k⃗l = k⃗0 +∆k⃗l, (8)

where we shall associate the k⃗0 propagation direction with the z axis. We will limit our-

selves to a finite subspace of modes obeying

∣∣∣∆k⃗l∣∣∣ ≪ ∣∣∣⃗k0∣∣∣. (9)

Modes within this subspace obey paraxial propagation i.e. the angle between k⃗l and k⃗0 re-

mains small. Furthermore, the condition ensures that the frequency of the modes ωkl is

close to ωk0 . Henceforth, we will consider only the modes within the subspace.

Under our assumption, we can define the annihilation operator in space. Changing to a

continuous basis we have

â(r⃗) =

∫
d3k⃗

(2π)3
â(k⃗) exp

{
i⃗k · r⃗

}
. (10)

This way, we can introduce a single photon in a spatial wave packet described by a mode

function ϕ(r⃗)

|1⟩ϕ =

∫
d3r⃗ ϕ(r⃗)â†(r⃗) |vac⟩ (11)

obeying normalization ∫
d3r⃗ |ϕ(r⃗)|2 = 1 (12)

In the coarse-grained approximation [16], ϕ(r⃗) can be treated as a spatial wave-function of
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a photon which allows its modulus squared |ϕ(r⃗)|2 to be interpreted as the probability of

finding the photon in a small region around r⃗.

While Eq. (11) defines a single photon as a single excitation of a spatial mode with finite

energy, we can do the same for the spectro-temporal domain. For instance, in a spatially

one-dimensional case, we can reparametrize our equations in terms of the frequency ω and

write

|1⟩f =

∫
dω f(ω)â†(ω) |vac⟩ , (13)

where the mode function f(ω) is normalized

∫
dω |f(ω)|2 = 1. (14)

In fact, by isolating a single transverse dimension in the paraxial approximation there is

a strict correspondence between spatial and spectro-temporal domains called space-time

duality [17].

Ultimately, we could also consider a general wave packet described in space and time

with the most general space-time correlations. However, in our discussion, we will be deal-

ing with photons corresponding to either well-defined frequency ω, transverse spatial com-

ponent r⃗⊥ or to a joint decomposition of the space-time mode function u(r⃗, t) into trans-

verse wavevectors k⃗⊥ and frequencies ω

|1⟩u =

∫∫
d2k⃗⊥
(2π)2

dω ũ(k⃗⊥, ω)â
†(k⃗⊥, ω) |vac⟩ , (15)

where ∫∫
d2k⃗⊥
(2π)2

dω
∣∣∣ũ(k⃗⊥, ω)∣∣∣2 = 1. (16)
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Of course, in the experiment, a well-defined frequency, wavevector, or position always

needs to be understood as a small range around the given central value.

Finally, while we will refer to counting photons with a given frequency ω or wavelength

λ, it should be understood as a process involving a conversion between the spectral and spa-

tial degree of freedom i.e. creating a strong correlation between the two, and a subsequent

spatially resolved measurement.

0.2.3 Localization of photons

We note that from the theory perspective, the localization of photons is a complex issue

broadly debated in the field. Ref. [18] provides a comprehensive review of this problem. In

brief terms, the issue arises due to the incompatibility between a photon state with sharply

localized electric and magnetic fields and the Maxwell equations. Accurate theoretical de-

scriptions of the single photon wavefunction and the solution to the localization problem

can be found in refs. [19–22].

Let us note that the localization problem does not arise in the interpretation of our ex-

periments since the spatial pixel size of the single-photon detectors is always much larger

than the wavelength of photons and we limit ourselves to paraxial spatial modes.

0.2.4 Coherent states

Let us consider a single mode and denote the associated annihilation operator by â. Coher-

ent state |α⟩ is defined as an eigenstate of the annihilation operator

â |α⟩ = α |α⟩ . (17)
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This defining property can be used to find the decomposition of a coherent state in the

Fock basis

|α⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!

|n⟩ . (18)

The photon statistic |⟨n|α⟩|2 of a coherent state follows the Poisson distribution. Coher-

ent states have a number of unique properties such as the lowest classically attainable pho-

ton number variance for a given average photon number. Photons in a coherent state can

be regarded as uncorrelated [23]. Coherent states are also the basis for one of the phase-

space representations of a quantum state, the Glauber–Sudarshan P (α) function [24].

Experimentally, coherent states well describe the light emitted by a laser operating well

above the threshold. In our discussion, we will sometimes refer to single-photon level light.

In such cases, it should be understood as a coherent state with the average photon number

⟨n⟩ = |α|2 relatively close to 1 (as compared to e.g. ≈ 1× 109 photons per second in a

”weak” near-infrared laser beam with a 1 nW of average power).
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1
Custom single-photon camera

Technological advancements are often the catalyst of fundamental studies. In general

terms, the invention of a laser can be regarded as such and also as much more than that [25,

26]. Another example is the technology of superconducting single-photon detectors which

reach unprecedentedly high detection efficiency enabling the loop-hole-free Bell tests [27,

28]. Conclusions of which are of a fundamental and philosophical nature.

In this spirit, we shall begin by describing our development of a custommeasurement

apparatus – a very fast single-photon-sensitive camera. The development began around
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year 2019 in the QuantumMemories Laboratory, led byWojciechWasilewski. The initial

motivation was an idea to implement quasi-probabilistic single-photon generation in the

quantummemory described in very general terms below and in detail elsewhere [29–38].

1.1 Motivation: wavevector-multiplexed quantummemory as a photon gun

The memory is implemented in a 1 cm long cloud of Rb87 atoms held in a magneto-

optical trap, with a temperature of ca. 50 µK. Its operation is based on an off-resonant

Raman scattering process where a spatially large write beam with a wavevector K⃗W gener-

ates a pair of excitations – a single photon (Stokes) scattered at k⃗S and a spin-wave. A spin-

wave refers to a collective excitation of all atoms with a spatial phase dependence described

with a wavevector K⃗. After a controlled delay on the order of tens of µs, a read beam with a

wavevector K⃗R induces the reverse process in which the spin-wave is destroyed and a single

photon (Anti-Stokes) is generated at k⃗AS. The wavevectors of the Stokes and Anti-Stokes

correspond to different wavevector (angular) modes of the memory. The process is gov-

erned by the conservation of energy and momentum. Importantly for our discussion, al-

tering the read beam wavevector direction K⃗R (i.e. the angle of the beam relative to the

cloud axis) changes the wavevector mode (emission angle) of the Anti-Stokes photon. [39]

Of course, this is subject to the phase matching limitations [31]. Energy levels of Rb87

used for the memory cycle, as well as the schematic of the reconfiguration idea have been

depicted in Fig. 1.1.

With this picture in mind, we can imagine that one observes the wavevector of the Stokes

photon k⃗S (i.e. measures transverse position in the far field of the atomic cloud), and then

uses this information to adjust the read beam wavevector K⃗R so that the Anti-Stokes pho-

ton is emitted in a selected, always the same mode. The mode can be then for instance cou-
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Figure 1.1: (a) Rb87 energy levels employed for the wavevector‐multiplexed quantum memory. (b)
Idea of the real‐time reconfiguration of the read process.

pled to a fiber. In general, in each pair of memory modes (Stokes, Anti-Stokes), the mem-

ory cycle generates a two-mode squeezed state. It can only be well approximated by single

photons (of high purity) if we keep the excitation probability low. Consequently, in each

memory cycle, in most of the modes, nothing happens. Nevertheless with around 1000

mode pairs [32, 37] (and possible extension to a few thousand [40]), it is quasi-deterministic

that at least in one pair the photons will be generated [29, 33]. Hence, if we can build a de-

vice that detects the Stokes photon wavevector and provides the information within the

memory lifetime, we can quasi-deterministically generate single Anti-Stokes photons into a

single mode. Such a device can be a single-photon sensitive camera, placed in the far-field of

the atomic cloud, with a fast feedback system. The main technological challenge is the very

short time required for all the processing, ideally on the order of a few µs.

The experiments with this memory usually employed the Andor Zyla 5.5 scientific

CMOS (sCMOS) camera coupled to a 2-stage image intensifier. The setup is well analyzed

and described in ref. [41]. While such off-the-shelf cameras offer terrific noise performance

(not necessarily needed with an image intensifier and for quantum optics), it is at the cost

of lower acquisition speeds. Furthermore, the camera frames have to be sent to the PC for

processing to discriminate bright points corresponding to actual photons hitting the pho-
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tocathode of the image intensifier. This process takes time on the order ofms.

To conclude, the idea of a quasi-deterministic photon source and the sub-par perfor-

mance of the off-the-shelf scientific cameras motivated us to pursue the difficult task of

bringing to life a custom detector. Our construction allowed almost a 10-fold increase in

the frame acquisition rate and the freedom of fast processing implemented in the field pro-

grammable gate array (FPGA) without the prior need to send the frames to the PC. While

ultimately we have not applied the camera as initially intended, the fast acquisition rates

were indispensable in quantum optical experiments described in this thesis.

It is also worth noting that quasi-deterministic photon generation has been proposed

and demonstrated in other systems [42–45]. With numerous quantum technologies based

on single-photon states [46–53], it is a practically and fundamentally important direction

of research. In particular, on-demand generation ofN -photon Fock states would greatly

benefit quantummetrology [9, 54–57].

1.2 Camera overview

There are two main advantages of a custom construction over the off-the-shelf sCMOS

cameras. The first is the freedom to choose a CMOS camera sensor. The second is the flex-

ibility of custom image processing implemented in the camera. Let us begin with the for-

mer.

Single-photon cameras are used throughout many fields of science and technology in-

cluding biology [58], medicine [59] or material science [60]. In particular, in quantum

technologies, such detectors are employed from quantum information processing [61],

computing [62] and communication [63, 64] to super-resolution imaging [65, 66] and lo-

calization [67] or characterization of non-classical states of light [68, 69].
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In most applications beyond quantum optics, the camera is not coupled to an image in-

tensifier as no true single-photon sensitivity is required. Instead, other figures of merit are

optimized for, such as the signal-to-noise ratio, resolution, or contrast. The case of cou-

pling the camera with an image intensifier is quite special, and the application of quantum-

optical experiments, which usually deal with a very low number of photons per camera

frame, is even more specialized.

The image intensifier (II) (further described in more detail) for each successfully de-

tected photon produces a relatively bright (on the order of 107 photons for a 2-stage II)

flash on an output phosphor screen. The screen is usually imaged with a bright relay lens

on the CMOS sensor. The sensor has to be sensitive enough to register the flash; however,

the requirement is nowhere near the single-photon sensitivity. As long as the sensor noise is

most of the time below the typical flash brightness, its further reduction brings little bene-

fit. This is in stark contrast to the task of dim-light imaging with the sCMOS camera alone.

Furthermore, there is a relation between the measurement noise and the acquisition rate

– slower readout reduced the noise. Hence, for our applications, a choice of a faster, more

noisy CMOS sensor can be beneficial compared to a low-noise, universal but slower, off-

the-shelf sCMOS camera.

Implementation of a custom image processing pipeline, while in principle possible in a

commercial camera, is much more straightforward with a custom construction. Certain

elements of the processing pipeline are common with off-the-shelf construction e.g. cali-

bration and mitigation of inhomogeneity within the set of analog-digital converters (ADC)

used in the CMOS chip, background subtraction, or hot pixel detection. The most worth-

while addition is the photon discrimination algorithm. In the tradition stemming from

earlier works in the QuantumMemories Laboratory [41], we call the algorithm ”photon-

finder”. The basic idea is that eachw × w pixel patch, wherew = 3, 5, 7, . . . is fixed for
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a given architecture, is analyzed within theW × H camera frame. The central pixel of the

patch is checked to fulfill 2 conditions:

1. its value v is within a preset range T ≤ v ≤ Tmax,

2. it has the highest value within the patch.

The threshold T is set empirically to be above the typical sensor noise (avoiding false-positive

detections), and yet as low as possible (maximizing efficiency). The idea of the photofinder

is depicted in Fig. 1.2.
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Figure 1.2: The idea of photonfinder thresholding visualized with exemplary simulated frame frag‐
ments. The typical width of a phosphor flash image is (a) above (b) below 1 px. The white crosshair
in the image marks the currently processed pixel. If the value of the processed pixel is in the preset
range T ≤ v ≤ Tmax, it is further checked for having the maximum value in the neighbor area
(here 3 × 3 px). (a) The processed pixel is a local maximum and a photon count is concluded. (b)
The processed pixel despite having a value in the desired range is not a local maximum (but a part of
the flash centered at its left neighbor). Hence, no photon count is registered. The frame is processed
pixel by pixel. In the case of large flashes (a) a model of the flash shape can be fitted to retrieve the
photon position with sub‐px resolution.

1.3 Image intensifier

The operation principles of an II are depicted in Fig. 1.3, while the photograph of our unit

together with the enclosure and accompanying electronics is included in Fig. 1.4. An image
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Figure 1.3: (a) Schematic depiction of an intensified camera. The image intensifier is comprised of
a photocathode, a multichannel plate (MCP, here two‐stage), and a phosphor screen. A photon
striking the photocathode [see (b) for magnified version] releases a photoelectron which is accel‐
erated (II gate open) or repelled (II gate closed) by a high voltage potential Vin. MCP is composed
of hexagonal microchannels of a few µm diameter. The walls of a microchannel are coated with
a secondary emissive material. Once the electron enters a microchannel it collides with a wall and
starts an avalanche process. Further accelerating potentials VMCP and Vout are applied. A cloud
of photoelectrons hits the phosphor screen producing a relatively bright (on the order of 1× 107

photons) flash.

intensifier consists of 3 elements enclosed in a high vacuum: a photocathode, a microchan-

nel plate (MCP), and a phosphor screen (in some constructions instead there is a wire grid).

We use an image intensifier by Hamamatsu, model V7090D-71.

The photocathode emits a photoelectron upon excitation by an impinging photon. The

process is probabilistic and its probability is the main limiting factor of the quantum effi-

ciency (QE) of image-intensified cameras. It is generally difficult to make a photocathode

in the near-infrared spectral regime which would have a high QE. For wavelengths around

800 nm the best QE is between 20% and 30% (e.g. Hamamatsu declares slightly above 20%,

while Photonis over 30%). On a limited sample of a few image intensifiers, we observed a

few percent unit-to-unit variation of the QE. The photocathode aging is also the main fac-

tor limiting the lifetime of intensified cameras, and a strong reason to avoid exposing the II

to stray light even if the II is not power supplied [70]. The active area of our photocathode

is 13.5mm× 10mm
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Figure 1.4: Photograph of the image intensifier (II) together with the Photek GM10‐50B gating
module (Gate) and a Photek FP630 high‐voltage power supply (HV), placed inside the shielding
aluminum housing.

TheMCP consists of a honeycomb-like structure of microchannels, each a few µm in

diameter. TheMCP is made of a highly resistive material, most often glass. Traditional

(since the 1960s) manufacturing technique employs stacking in parallel and fusing together

fibers with lead glass cladding and a glass inner core. Such prepared wafers are cut at a small

angle to the fiber axis and the glass core is removed with etching. The obtained array of

capillaries is heated in a hydrogen-rich atmosphere. In this process, the surface becomes

highly resistive and emissive. Alternative methods have also been developed including e.g.

atomic layer deposition [71].

A high voltage potential Vin is applied between the photocathode and the MCP. In a

closed state Vin = +50V, while in the active (open) state Vin = −200V. The voltage

(which we also call gating voltage) can be changed in nanoseconds. Usually, the II is kept

in the closed state and during a short gating period switched to the active state. If very fast

switching is required, some designs may include a metallic thin-film electrode between the

input window of the II and the photocathode, which reduces the capacitance of the pho-

tocathode. In the open state the negative voltage accelerates the photoelectron towards

the MCP. Since the microchannels are slightly angled with respect to the input surface,
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the photoelectron hits the wall of a microchannel soon after entering the MCP. Each mi-

crochannel acts like a photomultiplier while preserving the spatial information on the de-

tected photon. A high voltage across the MCP VMCP = 1800V facilitates the avalanche

multiplication process. In a 2-stage II (Chevron configuration) twoMCPs are fused to-

gether with opposite angles of the microchannels.

Finally, the cloud of electrons exiting the MCP is accelerated in Vout = 6000V and

strikes the output phosphor screen. We employ a P46 phosphor with a fast 100 ns-scale

decay time (a common alternative is P43 with a higher brightness but slow 1ms-scale de-

cay). The output flash contains around 1× 107 photons per input photon. The flashes are

imaged with a bright relay lens (magnification ofM = 0.44) onto the CMOS sensor.

20 30 40
Flash FWHM [ ]

0

100

200

Oc
cu

re
nc

e f
re

qu
en

cy

(a)

0 20 40 60 80 100
 [px]

0

20

40

60

 [p
x]

(b)

Figure 1.5: (a) Histogram of phosphor flash widths (full width at half maximum). (b) Spatial histogram
of the flash centers.

An exemplary statistic of phosphor flashes (spatial histogram and flash width histogram)

due to illumination with a weak coherent state (attenuated laser light) has been depicted in

Fig. 1.5.

1.3.1 Custom gating module

The role of the image intensifier gating module is to quickly change between−200V and

50V potential between the II photocathode and the microchannel plate. With the positive
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voltage, the photoelectrons are repulsed and the II is inactive. Such a load for the driver is

almost purely capacitive. Typically the capacitance is between 30 pF and 100 pF [72].

If short gating times are required (10s or 100s of ns), the required voltage slope becomes

substantial – on the order of a 1× 1011V s−1. At the same time, because the separation

between the photocathode andMCP is on the order of 100 µm it is paramount to avoid

overshoot which could result in an electrical breakdown.

For the first camera tests and the experiment described in ch. 2, we used a Photek GM10-

50B gating module. It is well suited to our image intensifier for up to 1× 104 frame per

second. However, with higher frame rates, we observed a gradual drop in the apparent

quantum efficiency of the camera. Around 1× 105 frames per second almost all signal

(photon counts) disappeared.

A careful study of the experiment and the GM10-50B construction led us to conclude

that the DC-DC converter responsible for the−200V was unable to recover the necessary

charge if the time between frames (hence between gating switches) was kept too low. Un-

fortunately, the module was damaged in the investigation process and we were unable to fix

it quickly. Instead, we designed and built a custom gating module based on modern GaN

transistors (Texas Instruments LMG3410). For illustration, its schematics and PCB layouts

have been attached in appendix B. Ultimately, the−200V was supplied to the driver from

an external high-voltage power supply and not from a DC-DC converter indicated in the

schematics.
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Figure 1.6: Photographs of the custom single‐photon‐sensitive camera. (a)‐(b) Camera with an im‐
age intensifier housed in the left‐most aluminum enclosure. The sensor and FPGA boards are visible
on the right. The cylindrical connector between the II box and the PCBs houses the relay lens. The
SMA cable in the top part of the II box is used to connect the custom gating module (not shown).
(c)‐(d) View on the sensor and FPGA PCBs. (e)‐(f) A different camera unit with an objective attached
instead of the image intensifier.
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1.4 Custom camera implementation

1.4.1 Hardware

The main component of the camera is its monochrome sensor Luxima Lux2100 produced

in the Complementary Metal-Oxide-Semiconductor (CMOS) technology. The 4/3” sen-

sor offers high frame rates (1.25× 105 frames per second for a 1920 × 8 frame size, up to

7× 105 for a single line of 1920 pixels), relatively (for a fast sensor) low read noise (42 e-),

and high brightness (7.5V lx−1 s−1). It outputs the data through 32 Low-Voltage Differ-

ential Signaling (LVDS) channels, each port capable of reaching 900Mbps. The optically

active area is 1952× 1096 pixels with a 10 µm pixel pitch.

To interface the camera sensor we use a Field Programmable Gate Array (FPGA) Xil-

inx Zynq-7020 (XC7Z020) in the form of a low-cost development boardMYIR Z-turn.

The FPGA integrated circuit additionally contains a Dual-core ARMCortex-A9 processor

which facilitates high-level operations (e.g. ordered from the PC) on the memory shared

with the FPGA. The Z-turn board provides all necessary interfaces with convenient ports,

as well as an integrated circuit for 1000Mbps Ethernet and a 1 GBDDR3 SDRAMmod-

ule which are crucial for the Data transmission and camera frame storage.

The camera sensor is soldered on a PCB, with another PCB stacked on top, and the Z-

turn stacked to the bottom. The top PCB contains voltage regulators and filters to produce

all power supplies for the sensor from a single 5V DC external power source. Boards are

stacked with aligned goldpin connectors and kept mechanically rigid with sleeved bolts.

For the coupling of optical elements (objectives, relays lens to image intensifier), a C-

mount connector is attached to the top PCB at a carefully chosen distance from the camera

sensor.

Photographs of the camera are included in Fig. 1.6.
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Figure 1.7: Sequence of a single camera frame. Active Low Global Photodiode Transfer Clearing
(TXLN) and Active Low Global Photodiode Reset (ABN) pulses clear the CMOS charge and begin the
exposure period of a new frame. During the Gate signal high level, the image intensifier is opened.
Active Low Global Photodiode Transfer (TXN) signal induces the charge readout and concludes the
frame exposure.

1.4.2 Gateware

We will refer to the part of processing implemented in the FPGA fabric (programmable

logic) as ”gateware” in an analogy to software running on the PC and firmware running on

the ARM core inside the Zynq chip.

Two-way communication with the sensor (via serial peripheral interface), frame se-

quence signals, and the fast data transfer (of frames) from the sensor (via LVDS lines) are

implemented in the gateware. Data from the LVDS lines is deserialized, buffered, and as-

sembled into frames. The general sequence of a single frame has been depicted in Fig. 1.7.

In each clock cycle a single LVDS line transmits pixel value from a single column in the

current row. The row is changed when all columns are read.

Background subtractation

To achieve a flat background in the camera frame, two methods are employed.
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(a) (b)

Figure 1.8: Exemplary camera frames with an objective attached instead of the image intensifier. (a)
Without the ADC gain equalization (b) With the ADC gain equalized.

The first comprises the gain calibration of 16 ADC converters within the camera sensor.

The converters work on lines of pixels in parallel. To obtain the same value of a pixel in

ADC units (ADU) for an equal charge, the ADCs have to be cross-calibrated. During the

procedure, the II is turned off (gated) and its input is covered. An algorithm at a high level

of software control gathers camera frames and calculates the variance between the rows of

pixels. Commands with a gain correction are sent based on the variance multiplied by a

small constant to ensure smooth convergence. The algorithm repeats the procedure until a

variance threshold is met, or the maximal number of repetitions occurs. The effect of this

equalization is exemplified in Fig. 1.8.

The second method is built within the gateware and constitutes a small fragment in the

block random access memory (BRAM) holding a recorded background (dark image). The

stored pattern is computed on the software control level as an average of typically 100 gath-

ered frames and sent via a command. The bit depth is reduced to 10 least-significant bits

due to the BRAM size limitations. The recorded background is subtracted from the re-

ceived camera frame before further processing (in particular before the localization and

thresholding of photons).
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1.4.3 Firmware

The (baremetal) C/C++ firmware runs on one of the ARM cores in the Zynq chip. Its

main role is ensuring communication with the PC and data transfer. Networking is man-

aged with the LWiP library. The firmware implements a server to which clients (PC soft-

ware) can connect. In addition to the ethernet-based communication, a USART interface

(serial port) provides basic commands and diagnostic information. The firmware can di-

rectly access regions of memory shared with the gateware, facilitating the configuration of

its elements (such as the threshold of the photonfinder) and diagnostics.

1.4.4 Software

Backend

With very high frame rates the data reception, real-time preview, and storage pose techni-

cal challenges on the PC software side. It is true even for just the data containing detected

photon positions within each frame. As already mentioned, the transmission is done over

the ethernet with the UDP protocol. High throughput is a definite advantage of the UDP

over TCP; however, it comes at a cost of reduced reliability. The data in these protocols is

generally transmitted in small packets and further assembled at the receiver. The order of

the send packets is in general not preserved and in the UDP protocol, the transmitter does

not receive any feedback with regards to the packet reception.

In practice, the data for a given camera frame may turn out to be incomplete (corrupt)

or arrive after the more recent frame has been received. Let us focus on the reception of

the photon position data, as it is most relevant in the regime of very high frame rates. From

the perspective of the gateware, the data about each photon detected in a frame is in the

form of a single record (bit structure) stored in BRAM and containing a 5 × 5 frame re-
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gion around the photon, its coordinates in the frame, 4 youngest bits of the frame number,

and a 2 bit counter for the BRAM cycle (incremented upon reaching the final address and

starting the storage from the first address). The coordinates are stored as 11 bits for each

dimension. Each frame pixel is 12 bits. Hence, the whole structure is 328 bits which is 41

bytes. Storing the frame regions (pixel values) around the detected photon is not only a

good idea for debugging the algorithms but also provides useful information on the distri-

bution of flash widths and amplitudes. Such distributions can be interrogated for instance

to check whether the camera sensor is optimally placed in the focus of the relay lens (high

amplitudes, low widths).

Let us assume on average 5 photons per frame and 105 frames per second. It amounts

to ca. 19.5MB s−1 or ca. 156Mbit s−1 which is still significantly below the typical Ether-

net connections of 1Gbit. The main challenge is to ensure that all photons are classified

into the correct frames. Since the photon data structures appear at the receiver in an un-

ordered fashion, each frame has to be kept ”open” for further photons for a long enough

time. However, it has to be concluded and ”closed” at some point. This is solved with a cir-

cular buffer that remembers 2 generations of frames. Each generation refers to a full range

of 4 transmitted bits of the frame number (so 16 frames per generation). Photons are clas-

sified to the current generation according to their frame number. The last seen frame num-

ber is remembered. If the incoming photon has a frame number more than 8 frames up or

down from the last frame number, the last generation is closed, the current generation be-

comes the last, and a new generation is opened to be the current. This heuristic approach

works very well in practice once implemented in a fast multiprocess application written in

C++. The circular buffer is a separate process independent of the real-time analysis, saving

and passing the data to the frontend.

All real-time analysis (e.g. histograms of photon positions, photon and frame rate statis-
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tics etc.) is done in the backend utilizing the Boost library. Data storage is also implemented

in the backend. Each module is a separate process and all processes are arranged in a series.

The data is passed from process to process by queues including special queue values used to

pass commands (e.g. termination).

Frontend

To facilitate convenient control of the camera, live preview, and the data-saving process a

frontend application has been written in Python with a Qt framework. The frontend com-

municates with the backend C++ application via a Cython interface. Frontend provides

a live preview of the spatial photon histograms, the number of frames per second, and the

average number of photons per frame. Controls allow basic configuration of the live his-

tograms, as well as initiation and control of the data saving.

Photon data analysis

The data is stored in the form of 3 files with ”pxy”, ”pnn” and ”pimg” extensions. The

”pxy” file contains (x, y) in-frame coordinates of subsequent photons. The ”pnn” file con-

tains a number of photons detected in subsequent frames. Finally, the optional ”pimg”

file contains 5 × 5 pixel fragments of the frame around each photon. This custom data

format is further converted to our in-house standard used with other intensified scientific

CMOS cameras (experiments with the quantummemory). After conversion, the photon

data can be conveniently processed in Python with our ”photonpacket” library. For details

see ref. [29].

More sophisticated camera controls and calibrations are done directly via Python scripts.
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Figure 1.9: Photographs of (a) the PCB with a grid of LEDs for the photonfinder testing, (b) the test‐
ing setup.

1.4.5 Mechanical construction

The image intensifier with a high-voltage supply is kept in an aluminum housing. A relay

lens is placed between the image intensifier’s phosphor screen and the camera sensor. The

whole camera is mounted on a rigid, stable aluminum base. The base is comprised of two

parts connected with a kinematic mount which allows for easy detachment of the camera

(e.g. for maintenance) and repeatable replacement. The mechanical project in its original

form (untranslated) is attached for illustration in appendix A.

1.5 Testing

1.5.1 Flashing LEDs

One of the simplest tests of the camera and the photonfinder was to observe a pattern of

flashing LEDs. Instead of the image intensifier, the camera has an objective mounted. The

LED flashes are similar in size to the phosphor flashes of the II. The 9 LEDs are placed on a

custom PCB in a rectangular grid pattern. The PCB contains an LED driver and a binary

counter incremented with a single digital pulse. The incrementing pulses are sent from
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the camera in the frame sequence. This way, subsequent frames should contain different,

predictable patterns. In the main test, we compared the output of the gateware photon-

finder (number and position of photons) with simultaneously gathered raw frames (post-

processed on PC with a software photonfinder). A photograph of the test setup is depicted

in Fig. 1.9.

1.5.2 Pseudothermal light

Another simple test of the camera was to repeat the measurements of the second-order

photon number autocorrelation function for pseudo-thermal light (c.f. ref. [73]). Such a

state of light has the same statistics as thermal light but with orders of magnitude longer

coherence time. It can be obtained with a rotating ground glass diffuser illuminated with

a continuous-wave laser light. It is experimentally the simplest way to observe non-trivial

autocorrelation. Since we had comparable data from previous measurements with an off-

the-shelf sCMOS camera and the expected result can be calculated analytically, repeating

the measurement was a good test for our camera.

The setup is depicted in Fig. 1.10, while the resulting autocorrelation is presented in

Fig. 1.11. Definitions and the details of the calculation and correction procedures can be

found in ref. [73]. As a camera test, it is important that the result well-match the model

prediction.

1.6 Conclusion

In this chapter, we have briefly discussed a custom scientific tool that we developed for fur-

ther experiments, a fast single-photon-sensitive camera. An overview of the camera con-

struction, image intensifier working principles, hardware implementation, and software
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Figure 1.10: Simplified experimental setup for the measurement of the second‐order intensity au‐
tocorrelation function. Pseudo‐thermal light is obtained by illuminating a rotating ground glass dif‐
fuser with a continuous‐wave (CW) laser. The ground glass diffuser is far‐field imaged onto the
single‐photon camera sensor.
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Figure 1.11: Results of the second‐order intensity autocorrelation function measurement including
the calculation from raw data (raw), the result after applying a correction for image intensifier cross‐
talk (c.f. ref. [73]), and a fitted analytical model.

design has been presented. Finally, we briefly described some of the tests used to check the

correct camera operation.

The ability to detect single photons with excellent spatial resolution and high frame rates

will prove very useful for the experiments discussed in the next chapters.

30



2
Hybrid correlations of photon pairs

2.1 Foreword

The first experiment with the camera was meant to be both a good test of its capabilities

and still of high interest from the scientific perspective. We decided to measure hybrid

spectral-angular 4-dimensional correlations between pairs of photons generated in a non-

collinear spontaneous parametric process (SPDC) pumped with a spectrally-broad light.

Since the correlation function is 4-dimensional and its high-fidelity reconstruction requires
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a large number of collected photons, the high acquisition speed of the camera proves ex-

tremely valuable and makes a direct measurement feasible.

From the fundamental point of view, this chapter is concerned with the characterization

of hyperentangled states of two photons. Non-classical photonic states are of significant

importance for quantum-enhanced communication and quantummetrology. They can

be easily created, and interact with the environment very weakly enabling long-distance

communication. Furthermore, very efficient detection techniques have been developed in a

vast range of wavelengths [74].

The chapter is based on ref. [75].

2.2 Introduction

Protocols of quantum optical communication and computation can be often enhanced by

using photonic states exhibiting nonclassical correlations across different degrees of free-

dom (DoF) [76–78]. Such states are referred to as hyperentangled states. Fundamentally,

the use of several DoFs greatly expands the Hilbert state and the informational capacity of

the state. Generation of pairs of photons correlated in spectro-temporal, spatial, and orbital

angular momentum (OAM) DoFs has been demonstrated experimentally, including hy-

perentanglement generation across 4 DoFs in SPDC sources [79]. Exemplary protocols, in

particular, able to benefit from the hyperentangled states are quantum teleportation [80],

superdense coding [81], and complete analysis of Bell-states [82].

Nonetheless, experimental characterization of multidimensional states remains challeng-

ing. Single-pixel detectors such as superconducting nanowires offer excellent timing reso-

lution [83], as well as spectral resolution when combined with dispersive elements such as

chirped fiber gratings [84] or detector-integrated diffraction gratings [85]. Such setups pro-
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vide a way to implement high-dimensional quantum communication [86], temporal super-

resolved imaging [87] or observe quantum interference in time or frequency space [88, 89]

- a promising approach for quantum fingerprinting [90, 91]. Single-photon-resolving cam-

eras on the other hand naturally offer spatial or angular resolution, which can be exploited

in super-resolution imaging [65, 92–95], interferometry [96], characterization [97, 98] or,

similarly as in the previous case, observation of quantum interference effects such as in the

Hong-Ou-Mandel–type experiments [99]. Recently however, the capability of cameras has

been expanded by invoking a well-knownmode conversion technique, in which Sun et al.

simply observed spectral correlation with the help of a diffraction grating [100]. It is thus a

promising approach to use a camera to observe many DoFs simultaneously.

One of the experimentally feasible examples involves the spectral DoF combined with

the transverse-wavevector (or equivalently the angle of emission). In particular, we will

consider a pair of hyperentangled photons. For simplicity, and without loss of generaliza-

tion, we can limit the transverse-wavevector to a single spatial dimension. This way we are

left with a 4 dimensional space of the two-photon state. For each photon, a single dimen-

sion corresponds to its spectral DoF and a single dimension to its transverse wavevector.

Experimental generation of such states can be achieved in a straightforward way with a

weakly-pumped SPDC process in a bulk crystal, set in a non-collinear configuration, and

with a broadband pump. Of course, proper filtering in the spectral and spatial domains is

required, as further discussed.

While simple to generate, two-photon correlations in such states are difficult to char-

acterize. Since ideally we are dealing with a two-photon state, the object of interest is the

second-order intensity correlation function, which quantifies the degree of correlation

between observing one photon (s – signal) from the pair at certain spectral-wavevector

coordinates (k(s)x , λs) and observing the second photon (i – idler) at some other spectral-
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wavevector coordinates (k(i)x , λi). In the experiment, what we can measure is the number

of coincidences between the two photons in this 4-dimensional space (k(s)x , λs, k
(i)
x , λi). As

such the measurement poses the following two problems:

1. a conversion between wavevector and spectral DoF is required,

2. we need to observe a large number of photon counts to have a high resolution and

accuracy in a 4-dimensional space.

The use of fast detectors certainly helps with the latter. For the former, a simple diffraction

grating can provide a spectral to spatial DoF conversion, as demonstrated in a wide context

by Sun et al. [100]. We also note that the conversion between the transverse wavevector

(or angle) to a transverse position is a standard procedure of far-field imaging [101]. Since

we assume that by the experiment design the two photons can be spatially separated, af-

ter the DoF conversions, we are left with two 2-dimensional spatial regions. Each region

corresponds to a single photon of the pair. Each spatial dimension within the region corre-

sponds to either the spectral or wavevector DoF. A single-photon camera is a natural choice

for the characterization of coincidences between two spatial regions. A simplified experi-

mental setup is depicted in Fig. 2.1.

Hitherto similar measurements employed time-of-flight spectrometers for the spectral

resolution and involved a scan of the wavevector space with bucket detectors [102]. Such

an approach is most suitable for the telecom wavelengths, where time-of-flight spectrom-

eters are easier to implement compared to the near-infrared. Furthermore, this method

requires compressed sensing techniques.

Beyond direct correlation measurements, more sophisticated high-dimensional entangle-

ment detection techniques [103] could be adapted for the use with a single-photon camera.

Furthermore, the measurement of correlations itself proves useful in the optimal utilization
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Signal (s)

Idler (i)

Figure 2.1: The idea of the measurement of 4‐dimensional spectral‐angular correlations between a
pair of photons. A pair of signal (s) and idler (i) photons is generated in the SPDC process in a non‐
linear crystal (NL). The phase‐matching in the crystal is set for the non‐collinear generation of pho‐
ton pairs. The emission cone is far‐field imaged onto a slit (FM) which selects only a small range of
transverse wavevectors ky in the y axis. The crystal is imaged onto a diffraction grating (DG) which
acts as a converter between the spectral and angular degrees of freedom in the x axis. Finally, the
grating is far‐field imaged onto a single‐photon sensitive camera. Two distinct regions in the camera
frame correspond to the signal and idler, respectively. Within each region, the position corresponds
to the transverse wavevector kx and optical frequency ω. Coincident photo counts between the
regions are registered with a spatial resolution, allowing for the reconstruction of the 4‐dimensional
correlations.

of entangled states e.g. for quantum key distribution whose rate can be improved by non-

local dispersion compensation [104]. Another example is the measurement of higher-order

correlations which finds its uses in super-resolution imaging [93, 94].

2.3 Theory

2.3.1 Two-photon amplitude

We shall begin the theoretical description with the SPDC process. With a broadband, fo-

cused pump beam and a short nonlinear crystal emission from the SPDCwill be highly

multimode in the spectral and transverse wavevectors DoFs. Nevertheless, let us focus on

a single pair of signal and idler modes. In the SPDC process a two-mode squeezed state
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|ψ⟩ =
∑

j=0 χ
j/2|j⟩s|j⟩i, is generated. However, to the first order in√χ, the resulting

state can be approximated as a photon pair |1⟩s|1⟩i. We would like to find an expression for

the joint two-photon wavefunction in transverse wavevector and spectral coordinate

Ψ(ks,⊥, λs;ki,⊥, λi) = ⟨ks,⊥, λs|1⟩s⟨ki,⊥, λi|1⟩i. (2.1)

Let us begin with the positive frequency part of the pump classical electric field as given by

E(+)
p (r, t) = Ep

∫
d2kp,⊥dωpAp(kp,⊥, ωp) exp[i(kp · r − ωpt)], (2.2)

where Ep is the pump pulse amplitude, kp,⊥ denotes the transverse wavevector andAp de-

scribes the normalized slowly varying envelope of the pulse. We will consider only the two-

photon part of the full two-mode squeezed state generated during the SPDC process [105].

The two-photon wavefunction is given by

|Ψ⟩ =
∫

d2ks,⊥d
2ki,⊥dωsdωiΨ(ks,⊥, ωs;ki,⊥, ωi)× â†(ks,⊥, ωs)â

†(ki,⊥, ωi)|vac⟩,

(2.3)

where the i and s correspond to signal and idler photons, respectively. Let us assume a crys-

tal with length L and that the pump beam propagates along the z axis. The two-photon

amplitudeΨ(ks,⊥, ωs;ki,⊥, ωi) is given by

Ψ(ks,⊥, ωs;ki,⊥, ωi) = N
∫ L/2

−L/2

dz
{
Ap(ks,⊥+ki,⊥, ωs+ωi) exp[i∆kz(ks,⊥, ωs;ki,⊥, ωi)z]

}
,

(2.4)

36



where the wavevector mismatch∆kz(ks,⊥, ωs;ki,⊥, ωi) described the phase matching of

the process and is determined by the z components of the constituent wavevectors

∆kz(ks,⊥, ωs;ki,⊥, ωi) = kp,z(ks,⊥ + ki,⊥, ωs + ωi)− ks,z(ks,⊥, ωs)− ki,z(ki,⊥, ωi).

(2.5)

Throughout our analysis, we are assuming the paraxial approximation. In particular, it

means that |k⊥| ≪ |k| and also that the crystal’s index of refraction does not undergo

substantial change in the range of considered wavevectors. Hence, we shall assume that the

transverse wavevectors are equal within and outside the crystal. One may observe that at

the boundary or air and crystal the emission angle increases by a factor equal to the crys-

tal’s index of refraction. However, the total wavevector also increases by the same factor.

Therefore, in the small-angle approximation, it necessitates that the transverse component

remains unchanged.

Let us integrate Eq. (2.5) along the z direction to get

Ψ(ks,⊥, ωs;ki,⊥, ωi) = NAp(ks,⊥ + ki,⊥, ωs + ωi)sinc
[
L∆kz(ks,⊥, ωs;ki,⊥, ωi)

2

]
.

(2.6)

In the experiment, we shall only transmit a small range of ky around ky = 0 and block

other ky components. For this reason henceforth we will use a simplified notation kα,⊥ →

k
(α)
x ; α ∈ {s, i}.

2.3.2 Photon number covariance model

Let us observe that |Ψ(k
(s)
x , ωs; k

(i)
x , ωi)|2 is directly proportional to the probability

of generating a signal photon at the transverse wavevector k(s)x and with a wavelength of

λs = 2πc/ωs and at the same time an idler photon with k(i)x and λi = 2πc/ωi. If the two-
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photon term vanishes |Ψ(k
(s)
x , ωs; k

(i)
x , ωi)|2 = 0 for some (k(s)x , ωs, k

(i)
x , ωi), then the

probability of registering a pair of photons at (k(s)x , ωs, k
(i)
x , ωi)will be given by the prod-

uct of marginal probabilities of registering a signal at (k(s)x , ωs) and an idler at (k
(i)
x , ωi).

Therefore, |Ψ(k
(s)
x , ωs; k

(i)
x , ωi)|2 will be directly proportional to the covariance of the

photon number between idler and signal modes Cov(k(s)x , λs; k
(i)
x , λi).

For visualization and comparison with the experiment, we will divide the coordinates

into wavelength {λj} and wavevector subregions {k(j)x }where j ∈ {s, i}, and sum the

coincidences within a signal-idler pair of either wavelength or wavevector regions. This way

we will obtain 2D dimensional maps. To directly compare our calculations with experi-

mental results, let us also sum the modulus squared amplitudes in these regions

∣∣Ψ{λs},{λi}(k
(s)
x , k(i)s )

∣∣2 = ∑
λs∈{λs},λi∈{λi}

∣∣∣∣Ψ(
k(s)x ,

2πc

λs
; k(i)x ,

2πc

λi

)∣∣∣∣2, (2.7)

∣∣∣Ψ{k(s)x },{k(i)x }(λs, λi)
∣∣∣2 = ∑

k
(s)
x ∈{k(s)x },k(i)x ∈{k(i)x }

∣∣∣∣Ψ(
k(s)x ,

2πc

λs
; k(i)x ,

2πc

λi

)∣∣∣∣2. (2.8)

2.3.3 Experimental covariance and accidental coincidences

In the experiment, we will convert the x component of the transverse wavevector kx to

a spatial position in the camera frame, while selecting only photons with ky ≈ 0. The

spatial dimension which would otherwise correspond to ky is used for mapping the spec-

tral DoF. Finally, the single-photon camera registers the number of photons in each pixel

n(k
(ξ)
x , λξ) ∈ {0, 1}; ξ ∈ {s, i}. The average number of photons across many camera

frames ⟨n(k(ξ)x , λξ)⟩ corresponds to an estimate of the probability of observing a photon at

a given coordinate. Hence, the experimental photon number covariance which is given by

Cov(k(s)x , λs; k
(i)
x , λi) = ⟨n(k(s)x , λs)n(k

(i)
x , λi)⟩ − ⟨n(k(s)x , λs)⟩⟨n(k(i)x , λi)⟩ (2.9)
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corresponds to the estimate of the probability of detecting a non-accidental coincidence.

Each camera frame corresponds in time to 96 pump laser repetitions due to a relatively long

gating time of the image intensifier. This way 96 temporal modes are coalesced in a single

camera frame, leading to accidental coincidences between photons originating from sepa-

rate temporal modes. Let us note that the second term in Eq. (2.9) roughly corresponds to

the accidental coincidences. Again, for visualization, we sum the covariance over the wave-

length {λs}, {λi} or wavevector {k(s)x }, {k(i)x } subregions yielding:

Cov{λs},{λi}(k
(s)
x , k(i)x ) =

∑
λs∈{λs},λi∈{λi}

Cov(k(s)x , λs; k
(i)
x , λi), (2.10)

Cov{k(s)x },{k(i)x }(λs, λi) =
∑

k
(s)
x ∈{k(s)x },k(i)x ∈{k(i)x }

Cov(k(s)x , λs; k
(i)
x , λi). (2.11)

2.3.4 Non-classical correlations and the mode size

Let us start with the second-order intensity (photon number) correlation function for a

pair of signal and idler modes [106]. It will be useful in estimating the mode size of the

SPDC emission, and quantifying its non-classical character. The correlation function is

given by

g(2)(k(s)x , λs; k
(i)
x , λi) =

⟨n(k(s)x , λs)n(k
(i)
x , λi)⟩

⟨n(k(s)x , λs)⟩⟨n(k(i)x , λi)⟩
, (2.12)

where the term ⟨n(k(s)x , λs)n(k
(i)
x , λi)⟩ corresponds to an average over camera frames of

coincidences between the idler at (k(s)x , λs) and the signal at (k
(i)
x , λi), and where similarly

⟨n(k(j)x , λj)⟩ j ∈ ⟨s, i⟩ correspond to the average number of single photon counts. To

tackle this 4-dimensional object we will sum the coincidences and singles over the uncorre-

lated directions. It is convenient to first transform these quantities to± coordinates with
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Figure 2.2: (a) Second order intensity correlation function between signal and idler modes, in re‐
duced coordinates g(2)(k(s)x + k

(i)
x , λi + λs). (b) A selected cross section with λi + λs = 2λp.

Experimental data (blue points) is presented alongside a Gaussian fit (red line) with the best‐fit width
of σ = 10.02± 0.46 [rad/mm].

k± = k
(s)
x ± k

(i)
i , λ± = λs ± λi. This way we get

g(2)(k+, λ+) =
∑
k−,λ−

⟨n(k(s)x , λs)n(k
(i)
x , λi)⟩(k+, k−; λ+, λ−)/

{ ∑
k−,λ−

⟨n(k(s)x , λs)⟩(k+, k−; λ+, λ−)× ⟨n(k(i)x , λi)⟩(k+, k−; λ+, λ−)
}
. (2.13)

The width of the 2-dimensional correlation function g(2)(k+, λ+) is a good indicator of

the mode size. Let us look at a cross-section g(2)(k+, λ+ = 2λp). Assuming a Gaussian

shape with width σ the mode size of the SPDC emission in the transverse wavevector DoF

is given by

σk-mode =
σ√
2
, (2.14)
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with the
√
2 factor originating from the Jacobian of the (k(s)x , k

(i)
x ) → (k

(s)
x + k

(i)
x , k

(s)
x −

k
(i)
x ) transformation. In analogous way the k(s)x = −k(i)x cross-section gives the spectral

mode width.

Let us trace over the idler mode. The remaining mode of the signal photon has a ther-

mal photon count distribution. The second-order intensity autocorrelation for this mode is

given by g(2)idler,auto = g
(2)
signal,auto = g

(2)
therm,auto ≤ 2. Therefore, using the Cauchy-Schwarz in-

equality we find that the upper classical bound on the second-order intensity cross-correlation

function reads

g
(2)
classical ≤

√
g
(2)
signal,autog

(2)
idler,auto = 2. (2.15)

The 2-dimensional second-order intensity correlation function in± coordinates, calcu-

lated from the experimental data, has been depicted in Fig. 2.2. The cross-section for the

degenerate wavelength has a width of σ = 10.02(46) radmm−1. Using Eq. (2.14) this

corresponds to the mode size of σk-mode = 7.09(33) radmm−1. The complementary cross-

section gives the spectral mode size of σλ-mode = 4.20(6) nm. Note the maximum of the

g(2) function above the classical limit of 2.

2.3.5 Reference-free efficiency estimation

Following the reference-free method originally described by Klyshko et al. [107] (see also

ref. [108]), we estimate the total efficiency of our setup. The method is based on an ob-

servation that for SPDC emission the rate of single counts and the rate of coincidences

scale differently with the setup efficiency η. Let us assume a noiseless scenario with a single

spatial mode andR temporal modes per camera frame (corresponding to the number of

laser pulses per image intensifier gating time). The average number of signal or idler pho-

tons per frame is ⟨nj⟩ = Rηχ, j ∈ {i, s}while the average number of coincidences
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⟨nins⟩ = Rη2χ+ ⟨ni⟩⟨ns⟩. This way,

η =
⟨nins⟩ − ⟨ni⟩⟨ns⟩√

⟨ni⟩⟨ns⟩
=

g(2) − 1√
⟨ni⟩⟨ns⟩

, (2.16)

where g(2) = maxλ+,k+ [g
(2)(λ+, k+)]. In the experiment, we get η ≈ 4%

2.3.6 Beta barium borate

Beta barium borate (β−BaB2O4) crystal abbreviated as BBO is a nonlinear uniaxial crys-

tal first described in 1984 by Chen et al. [109]. BBO has very desirable properties such as a

high damage threshold and a broad transmission (198 nm-2600 nm) and phase-matching

ranges. Furthermore, it is chemically stable and nonhydroscopic, its polished surfaces may

be easily cleaned and have the antireflection coatings applied and large, high-quality crystals

of BBO can be easily obtained [110]. Therefore, BBO finds a very versatile range of applica-

tions in nonlinear optics including second (SHG) and higher harmonic generation or sum

frequency generation.

The Sellmeier’s equations (refractive index dispersion relations) for BBO are given for

20 °C by

n2
o = 2.7405 +

0.0184

λ2 − 0.0179
− 0.0155λ2 (2.17)

n2
e = 2.3730 +

0.0128

λ2 − 0.0156
− 0.0044λ2, (2.18)

where o (e) refers to ordinary (extraordinary) polarization of the interacting light, nj, j ∈

{o, e} is the corresponding index of refraction, and wavelength λ is given in µm [111].
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2.4 Numerical calculations

2.4.1 Process intensity

Using Eq. (2.6) we can directly evaluate the process intensity
∣∣∣Ψ(k

(s)
x , ωs; k

(i)
x , ωi)

∣∣∣2 for se-
lected frequencies (or wavelengths λj = 2πc/ωj, j ∈ s, i) and transverse wavevectors

of the signal and idler photons. Let us consider the type I SPDC process in a BBO crystal

with a thickness of L = 0.5mm. The cutting angle i.e. the angle between our z-axis and

the crystal axis is taken as θ0 = 29.2°. The z-axis is perpendicular to the cutting plane of

the crystal. We will use Sellmeier’s equations as given by Eq. (2.17) an Eq. (2.18) to obtain

an expression for the refractive index for a single ray of interacting light propagating at an

azimuthal angle θ and a polar angle φ relative to the z axis. While for the ordinary (o) polar-

ization, the refractive index is independent of (θ,φ), for the extraordinary (e) we can obtain

this relation as a positive solution of the following quadratic equation

η(θ, φ) := [sin(θ) sin(θ0) sin(φ) + cos(θ) cos(θ0)]
2, (2.19)

1

ne(λ, θ, φ)2
=
η(θ, φ)

no(λ)2
+

1− η(θ, φ)

n
(0)
e (λ)2

. (2.20)

For the shape of the slowly varying envelope of the pumping pulse, let us assume a Fourier-

limited Gaussian in the spectral and spatial DoF, without correlations between the two

DoFs. Denoting the temporal full width at half maximum (FWHM) of the pulse as δt and

the beam waist asw0 the pump amplitude is given by

Ap(kx, ω) = A exp

[
−1

4
k2xw

2
0 −

δt2 (ω − ωp)
2

16 log(2)

]
. (2.21)

Henceforth, for numerical calculations, we will dropA (i.e. assume a unit value). We will
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also assume the pumping beam propagates along the z-axis with a linear, extraordinary

polarization. For a small spectral range (10 nm in the experiment), we can assume the to-

tal wavevector does not change significantly with the azimuthal angle θ i.e. k(λ, θ, φ) ≈

k(λ, 0, φ). Hence we can relate θ and the transverse wavevector component kx by

θ(λ, kx) = arcsin

[
kx

k(λ, θ = 0, φ)

]
, (2.22)

where k(λ, θ, φ) = 2πne(λ, θ, φ)/λ.

2.4.2 Walk-off angle

Let us also briefly consider the walk-off effect in the crystal i.e. the non-collinearity of the

wavevector and the Poynting vector for the extraordinary polarization. The walk-off angle

i.e. the angle between these vectors is given by

ρ(θ0, λ, θ, φ) = − 1

ne(θ0, λ, θ, φ)

∂ne(θ0, λ, θ, φ)

∂θ0
, (2.23)

where we now treated ne also as a function of θ0. For a pumping beam with λ = 400 nm,

θ = 0, φ = 90° and for θ0 = 29.2°, the angle is ρ ≈ −100mrad. In our case, since

Lρ≪ w0 the walk-off can be neglected.

2.4.3 Number of modes

Let us consider the theoretical two-photon wavefunction as given by Eq. (2.6). To estimate

the number of modes we first numerically compute the wavefunction in a range of exper-

imentally observed transverse wavevectors and wavelengths, with a Gaussian pump pulse

amplitude and experimental parameters. For the details of the simulation see section 2.4.
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NL

DM

f SP CAM

pump

Figure 2.3: (a) Histogram of photo counts in the transverse‐wavevector space, of emission from a
non‐collinear type I SPDC in a BBO crystal. Note the annular distribution. Photons have been regis‐
tered across 2× 105 camera frames. (b) Simplified experimental setup. NL ‐ nonlinear crystal, pump
‐ pumping beam, DM ‐ dichroic mirror, f ‐ far‐field imaging lens, SP CAM ‐ single‐photon camera.

Then the obtained numerical wavefunction is reshaped into a two-dimensional matrix so

that the first (second) dimension contains the spectral and transverse wavevector DoFs of

the signal (idler) combined. We then perform the singular value decomposition of this ma-

trix which yields the Schmidt coefficients {λj}. Following ref. [112] the Schmidt number

is given by

M = (
∞∑
j=0

λ2j)
−1 ≈ 4.7, (2.24)

and roughly corresponds to the accessible number of entangled modes.

2.5 Experiment

The experimental setup starts with ca. 100 fs pulses from a Ti:Sapphire laser (Spectra

Physics Mai Tai) with an frep = 80MHz repetition rate, a central wavelength of 800 nm

and an average power of ca. 3W. The beam is focused in a Beta Barium Borate (BBO) crys-

tal with a thickness of 0.5mm, cut for the second harmonic generation (SHG). The red

SHG pump is filtered out with a stack of two dichroic mirrors set for multiple reflections

of the blue SHG signal and with a bandpass filter with a central wavelength of 400 nm and

an FWHM of 10 nm. The SHG signal has an average power of 70mW and a beam waist

ofw0 = 70 µm. For the generation of photon pairs we use a type I SPDC process in a
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Figure 2.4: (a),(b) Histograms of photo counts in the space of the x component of the transverse
wavevector and the wavelength for (a) signal photon, (b) idler photon. Signal and idler regions are
spatially separated within a camera frame. Photons have been collected across 2 × 105 cam‐
era frames. Division boundaries of the transverse wavevector {k(s)x }, {k(i)x } and wavelength
{λs}, {λi} subregions have been depicted. Signal and idler regions are both divided equally which
is omitted for clarity. (c) Simplified experimental setup. SPDC emission is far‐field imaged onto a
rectangular slit which selects a small range of ky ≈ 0. Note that kx > 0 (kx < 0) corresponds
to the signal (idler) photons and the annular distribution of the emission ensures signal‐idler sepa‐
ration. The nonlinear crystal (BBO) is far‐field imaged onto a diffraction grating which converts the
spectral DoF λ into y‐axis transverse wavevectors ky(λ). Finally, the grating is far‐field imaged
onto a single‐photon camera, performing the conversion between the transverse wave vector and
the position in a camera frame.

second BBO crystal of 2mm thickness, in the non-collinear configuration, as depicted in

Fig. 2.3. The blue beam is focused in the second BBO crystal. The Gaussian beam width

parameter of the blue beam is ca. w0 = 70 µm. Afterward, the blue beam is filtered out

with two dichroic mirrors. The SPDC emission is spectrally filtered (central wavelength

800 nm, FWHM 10 nm) and far-field imaged with a lens (focal length f1 = 60 mm) onto

a rectangular slit with adjustable width. The slit selects a range of transverse wavevectors

[−∆ky/2,∆ky/2] around ky = 0. With another lens (f2 = 300 mm) the BBO crystal is

imaged onto a ruled diffraction grating (Nlines = 1200 lines/mm, the limiting resolution of

δλ = 2λp/Nlines = 0.66 nm). The grating is mounted vertically at a small horizontal angle

and in a Littrow configuration for high efficiency. The grating acts by adding a transverse
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wavevector in the y-axis with the magnitude dependent on the wavelength, hence mapping

the spectral DoF onto the transverse wavevector DoF. Finally, a third lens (f3 = 100 mm)

is placed after the grating to far-field image the first diffraction order from the grating onto

our custom single-photon camera. The total effective focal length of the setup (BBO to

camera) is feff = 30 mm. We note that the grating resolution limit is similar to that origi-

nating from the finite slit width∆ky.

The camera registers 104 frames per second, each with 10 × 1952 px. The image in-

tensifier gating is set to Tgate = 1.2 µs. We observe on average n̄tot = 0.12 photons per

camera frame. Since the gating time encompasses Tgatefrep = 96 laser pulses a useful figure

of merit is the number of observed photons per pulse n̄pulse = 1.25× 10−3 which after

accounting for the overall efficiency of the setup (ca. 4%) corresponds to the probability of

generating an SPDC photon pair per laser pulse of χ ≈ 1.5% ≪ 1.

Due to the SPDC emission and setup geometry separate regions in the camera frame

correspond to the signal and idler photons. Each region is 40 × 70 px and corresponds to

416 rad/mm×5.1 nmwhere the conversion is 5.95 rad/(mm×px) and 0.127 nm/px. The

BBO is cut for type I SPDC, however, by delicate alteration of the angle between the crystal

axis and the pump beam θ, the diameter and width of the annular-shaped SPDC emission

can be adjusted. From numerical modeling (see section 2.4) we estimate θ ≈ 31.950(25)°.

For comparison the corresponding cutting angle is specified at 29.2°.

2.6 Results

For the main measurement, we collected 1× 109 camera frames. During the data analysis

stage, the signal and idler frame regions are further divided into transverse wavevector and

spectral bins. The division boundaries are overlaid on an exemplary histogram of photo-
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Figure 2.5: Photographs of experimental setup fragments. (a) BBO crystal used for SPDC together
with pump filtering part, a regulated slit and a mirror routing the photon pairs to further parts of the
setup. (b) The custom fast single‐photon camera placed within the setup.

counts, in Fig. 2.4 (a),(b). The covariance is calculated according to Eq. (2.9 and summed

over the bins to get 2-dimensional maps, as given by Eqs. (2.10), (2.11). The summed co-

variances together with numerical predictions are depicted in Fig. 2.6. Note that for the

maps in spectral coordinates only the selected pairs of wavevector regions are depicted. In

other regions, the covariance vanishes.

Generally, a good agreement with the theory is observed, although, for the maps in the

spectral coordinates, a small systematic error can be observed. This is probably due to an

erroneous calibration of the absolute spectral coordinates within the camera frame. For

the numerical prediction, we fitted a model with only a single free parameter – the angle

between the pump propagation and the crystal axis θ. The best-fit parameter was close to

the nominal crystal cutting angle θ0.
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(a) (b)

Figure 2.6: Covariance between the idler and signal photons (a) in the transverse wavevectors space,
summed over different spectral ranges for each photon {λs},{λi} (b) in the spectral DoF, summed
over different transverse wavevector ranges for each photon {k(s)x },{k(i)x }. (a) Color map or (b) left
column depicts the experimental data. (a) White contours or (b) right column presents the numerical
calculation of the corresponding SPDC process intensity |Ψ{λs},{λi}(k

(s)
x ,k

(i)
x )|2 summed over the

relevant spectral or transverse wavevector ranges and normalized to a unit maximum.

2.7 Conclusion

In this chapter, we have described an experimental characterization of hybrid transverse-

spectral correlations in two-photon states generated in an SPDC process. The measure-

ment makes good use of the high acquisition speed of our camera to quickly gather 1× 109

frames and hence a high photocount statistic. With a simple and well-understood theory,
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the experiment can be also regarded as a test of the camera’s capabilities for the characteriza-

tion of non-classical light.

We note that selecting only a single component of the transverse wavevector kx with

ky ≈ 0 limits the in-principle 6-dimensional space to a 4-dimensional slice. This limitation

may be relevant for biaxial crystals, where the correlation function would be less symmetric.

Our proof-of-principle demonstration of a fast single-photon camera as a detector of hy-

brid two-photon correlations opens many possibilities for further development including

extensions to different DoFs such as orbital angular momentum.
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3
Quantum Spectroscopy

3.1 Foreword

Photons as the single quanta of light are naturally of central interest in the field of quantum

optics. Technically, the term single photon refers to a single excitation of some mode of the

electromagnetic field. If the photon is in a pure quantum state, we can describe its mode
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structure with a wavefunction e.g. in the spectral degree of freedom (DoF)

|1⟩ =
∫

dω ψ(ω)â†(ω)|vac⟩, (3.1)

where |1⟩ is a Fock state of a single photon |vac⟩ represents a vacuum state and â†(ω) cre-

ates a photon with frequency ω. Characterization of a single photon wavefunction ψ(ω)

can be of fundamental interest but also can prove useful for quantum-enhanced metrology.

One can imagine that a photon with an a priori knownmode structure interacts disper-

sively (i.e. is not absorbed or scattered) with a sample. The photon’s wavefunction post-

interaction contains information about the sample and the interaction itself. Remarkably,

it is a minimally invasive optical method to probe the sample – one cannot use less than a

single probe photon at a time.

We were inspired by the earlier work of our colleagues [113] which was concerned with

the characterization of a single photon wavefunction in the spatial degree of freedom using

a sptially resolved two-photon interference. Michał Parniak conceived the idea of using sim-

ilar methods in the spectral DoF. While similar in essence, characterization in the spectral

DoF poses significantly different challenges yet also promises new interesting applications

e.g. in the context of spectroscopy or characterization of fast phenomena.

This chapter is based on ref. [114].

3.2 Introduction

A single photon can among others have two interesting properties.

First, it can be an excitation of a very complex mode of the electromagnetic field e.g. with

added qualitative properties such as the orbital angular momentum (OAM). It is worth

noting that in the spatial domain, numerous applications and fundamental studies rely on
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the mode structuring including uncertainty relations [115] and improved sensitivity [116]

for OAM or remote object identification [117]. However, with the predominantly single-

mode optical fiber architectures, the spectro-temporal modes also attract broad attention in

the context of e.g. entanglement generation on-chip [118], bandwidth matching [119] or

quantum networks [120].

Second, a single-photon state is inherently non-classical and subject to unintuitive phe-

nomena. An example of this is the two-photon interference also known as the Hong-Ou-

Mandel (HOM) effect [121] demonstrating the quantized and bosonic nature of a photon.

However, these two properties are relatively rarely explored or utilized together.

Here we will demonstrate how a quantum phenomenon of spectrally-resolved two-

photon interference characterizes a single-photon in a complex spectro-temporal mode.

Furthermore, the mode structure will be a hallmark of an earlier light-matter interaction in

a rarely seen regime. A spectrally-wide (THz bandwidth) photon resonantly interacts with

a spectrally narrow (GHz bandwidth) atomic line in hot 87Rb vapor. This bandwidth-

mismatched interaction is almost exclusively dispersive, the photon is very rarely absorbed.

Hence, the method that we here describe is both a mean of non-invasive, dispersive spec-

troscopy and a fundamental characterization of a single photon’s spectral wavefunction.

3.2.1 Two-photon interference

Let us consider the phenomenon of two-photon interference in a simple scenario, depicted

schematically in Fig. 3.1. If two identical photons enter separate ports of a balanced 50/50

beamsplitter (BS), they always leave through the same port together. In other words, no

coincidences at the output ports can be observed. The effect can be understood as a de-

structive interference of the two-photon amplitudes corresponding to both photons being

transmitted or both being reflected.
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Figure 3.1: (a) Two identical photons simultaneously enter respective ports of balanced 50/50
beamsplitter (BS). (b),(c) Due to the Hong‐Ou‐Mandel effect the photons always leave together
through a single output port. (d) Placing a pair of single‐photon detectors at the output ports allows
observing the number of coincidences i.e. events where photons appear at different output ports
within a preset time window. (e) A simple way to make the mode functions of the photons different
is by delaying one of the photons by τ . (f) The rate of observed coincidences grows with |τ | and
reaches a plateau as the overlap between the mode functions of the photons approaches 0. This
qualitative behavior is often referred to as the ”Hong‐Ou‐Mandel dip” in reference to the original
experiment [121].

If the photons cease to be identical i.e. their mode functions do not perfectly overlap,

coincidences start to appear. The number of coincidences is a good estimator of the mode

functions overlap. This property was originally explored in the seminal paper of Hong, Ou,

andMandel, where the authors delayed one of the two identical photons and were able to

precisely estimate the delay from the number of observed coincidences [121].

Beyond this very important yet relatively simple scheme, a single-photon detection with

a resolution in a selected DoF can be added. Chrapkiewicz et al. explored this possibility

with a single-photon sensitive camera to estimate the overlap between spatial modes of two

photons and retrieve the differences between the wavefronts of their modes.

In general, two-photon interference with or without added resolution of single-photon

detection finds broad applications including super-resolution imaging [65], quantum fin-

gerprinting [46, 122, 123] and characterization of single-photon sources [102, 124–126].
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In particular, the HOM effect has been demonstrated previously with spectral resolution

using a time-of-flight spectrometer [127, 128]. The two-photon interference goes beyond

the photonic realm with demonstrations in other systems including atoms [129, 130], spin-

waves [131, 132] or phonons [133].

3.2.2 Simplified experiment

Let us consider a simplified version of our experiment. We begin with two single pho-

tons identical in all aspects except being spatially separated. The spectro-temporal mode

of each photon is an ultrafast pulse with a spectral width on the order of THz. One of

the photons (reference) remains unaltered while the other (probe) resonantly interacts

with a medium of hot 87Rb vapor. As already mentioned, the interaction is bandwidth-

mismatched. Hence it is mostly dispersive and the photon acquires a wavelength-dependent

phase exp[iφ(λ)]. The photons meet again at the respective inputs of a balanced 50/50

beamsplitter. We observe the beamsplitter outputs with a spectrally-resolving single-photon

detector e.g. a diffraction grating mapping frequencies to angles and a single-photon cam-

era in the far-field of the grating. Remarkably, the 2-dimensional pattern of spectrally-

resolved coincidences is a unique (and even redundant) representation of φ(λ). A sim-

plified experimental setup alongside a simulated coincidence map has been depicted in

Fig. 3.2.

3.3 Theory

3.3.1 Zero-area pulses

A resonant (or near resonant) interaction of a short pulse with a slowly relaxing medium

such as an atomic vapor has been vastly studied in the classical regime in the context of
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reference

Figure 3.2: Spectral characterization of a single photon using spectrally‐resolved two‐photon in‐
terference. A pair of identical broadband (ca. 10nm) single photons will serve as a reference and
probe. The probe resonantly interacts with 87Rb vapor. Via the bandwidth‐mismatched interac‐
tion, its spectro‐temporal mode becomes a zero‐area pulse. The reference and signal photons are
interfered on a balanced beamsplitter (BS) which outputs are observed with a spectrally‐resolving
single‐photon detector. A 2‐dimensional pattern of detected coincidences marks the dissimilarities
in the spectral phase of the signal and the reference photon, acquired in the former light‐matter
interaction. (inset) Exemplary simulated pattern of coincidences.

so-called zero-area (ZA) or 0π pulses [134–136]. Let us consider a short pulse with a real

slowly varying envelope E(z, t) inside a medium with an absorptive resonance near the

light frequency – effectively a two-level medium. McCall and Hahn identified the pulse

area θ and predicted its evolution along the propagation axis z. Denoting the dipole matrix

element of the transition by d, we define

θ(z) :=

∫
dt

2d

ℏ
E(z, t) (3.2)

and the McCall and Hahn’s Area Theorem states

∂zθ(z) = −α
2
sin θ(z), (3.3)
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where α is the linear optical attenuation coefficient. The notable implications of this the-

orem are that pulses with an initial area equal to an integer multiple of π have their area

unchanged during propagation. All other areas approach one of these special values. In

particular, in the case of a broadband pulse and a narrow absorption line (or equivalently

an ultrashort pulse and and a slowly relaxing medium), the pulse area will exponentially de-

cay to 0. The temporal envelope of such a ZA pulse consists of a series of alternating lobes

with± signs.

Single-photon zero-area pulses have been studied experimentally by Costanzo et al.

[137]. The authors characterized single-photon zero-area pulses in the temporal domain

using homodyne detection. The local oscillator (LO) mode shape was optimized to match

the temporal mode of the interrogated ZA pulse. While homodyning is a robust tomo-

graphic method [138], it is inherently affected by the shot noise of the local oscillator which

can hinder its performance in certain scenarios. We shall further compare homodyning and

two-photon interference in a simplified setup without spectro-temporal resolution (see

section 3.6.7).

3.3.2 Spectrally-resolved two-photon interference

Let us consider photon pairs generated in the SPDC process in a nonlinear crystal. The

setting is as already described in section 2.3.1 except now we will couple the signal and idler

modes into a pair of single-mode fibers. The coupling can be considered spatial filtering as

only the selected transverse components matching the fiber mode (after coupling optics

transformation) will be transmitted. In general, such a filtering alters the spectral structure

of the SPDC emission. For details concerning fiber coupling in our case of type I SPDC

in a BBO crystal see ref. [139]. We will proceed by assuming a fairly general two-photon

wavefunctionΨω(ωs, ωi) only requiring that the two-photon wavefunction is symmetric
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with respect to the exchange of the arguments

Ψω(ωs, ωi) = Ψω(ωi, ωs). (3.4)

This condition is necessary for high visibility of two-photon interference [127, 140, 141]. It

also implies that the central frequencies of each photon are equal

∫∫
dωi dωs |Ψω(ωs, ωi)|2ωs =

∫∫
dωi dωs |Ψω(ωs, ωi)|2ωi. (3.5)

We will approximate the two-mode squeezed state produced in the SPDC as

|ψ⟩ ≈
(
1 +

√
χ

∫∫
dωi dωsΨω(ωs, ωi)a

†
s(ωs)a

†
i (ωi)

)
|vac⟩, (3.6)

which is valid in the regime of low excitation probability χ≪ 1 [105], and where a†s(ωs),a†i (ωi)

are the creation operators for signal and idler photons with frequencies ωs and ωi, respec-

tively.

Omitting for the moment the details of the light-matter interaction the signal photon

partakes, we will only assume that the interaction is dispersive i.e. can written as

Ψω(ωs, ωi) → Ψω(ωs, ωi)× exp
[
iφs,ω(ω)

]
≡ Ψ̃ω(ωs, ωi), (3.7)

where Ψ̃ω(ωs, ωi) is the two-photon wavefunction after the interaction and φs,ω(ωs) cor-

responds to the acquired spectral phase of the signal photon.

The ideal transformation of a balanced beamsplitter on the creation operators reads

a†± =
1√
2
(a†s ± a†i ), (3.8)
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where a†± corresponds to the modes of the± BS output ports. Accordingly, under this

transformation, the two-photon component of our state develops 4 terms. Since in the ex-

periment our measurement projects the state onto a subspace containing at least one pho-

ton in each±mode, we shall only consider the 2 coincident terms i.e. containing a†+a
†
−.

The other 2 terms correspond to both photons being in a single±mode i.e. contain a†+a
†
+

or a†−a
†
−.

The probability of observing a coincidence between photons at ω+ and ω− is given by

Pω(ω+, ω−) =
1

4

∣∣Ψ̃ω(ω+, ω−)− Ψ̃ω(ω−, ω+)
∣∣2. (3.9)

Inspecting Eq. (3.9) we can immediately see why the the condition of Eq. (3.4) is necessary

for destructive interference between identical photons.

A notable property of HOM interference is its robustness to the global (i.e. here frequency-

independent) phase fluctuations. Indeed any phase φglobal between signal and idler just

multipliesΨω(ωi, ωs) by exp(iφglobal) and hence does not affect Pω(ω+, ω−). This prop-

erty has been employed in among others near-term quantum repeater architectures [40,

142, 143] or proposed quantum communication protocols [46, 91, 144]. In our case,

without the loss of generality, we will assume that the global phase is chosen such that

Ψω(ωs, ωi) is real. This way we can write

Pω(ω+, ω−) =
1

2
|Ψω(ω+, ω−)|2 ×

[
1− cos(φω,s(ω+)− φω,s(ω−))

]
, (3.10)

where the first term on the right is just the joint spectral intensity (JSI) of the two-photon

state, and the second term describes a spectrally-resolved two-photon interferogram. Let us

look at the 2-dimensional argument of this second term. For a fixed ω− (ω+) its 1-dimensional
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slice along ω+ (ω−) is a standard (alike e.g. probing a phase of a Mach-Zehnder interferom-

eter) interference pattern with a phase offset given by φs,ω(ω−) [φs,ω(ω+)]. Hence, up

to this phase offset and the JSI weighting (a priori known) each row or column of a 2D

interferogram carries the same information about the interrogated 1-dimensional phase

φs,ω(ω). As such the interferogram is a redundant representation, hence robust to noise

and experimental imperfections. In section 3.6.5 we will briefly discuss how standard

Fourier-domain methods can be adapted to the reconstruction of φs,ω(ω) from the in-

terferogram.

We should also consider an important experimental limitation – non-ideal interference

visibility V . One way to include it into our theoretical description would be to consider a

statistical mixture of two scenarios. One as we have done already and the other with each

photon entering the beamsplitter separately i.e. not interfering at all. Formally we would

consider a density matrix of the initial state and modify the beamsplitter transformation.

Another way is by considering that the local visibility V(ω+, ω−) can be defined by consid-

ering a constant phase offset∆φ such that

cos(φω,s(ω+)− φω,s(ω−)) → cos(φω,s(ω+)− φω,s(ω−) + ∆φ) (3.11)

then

V(ω+, ω−) =
max∆φ Pω(ω+, ω−)−min∆φ Pω(ω+, ω−)

max∆φ Pω(ω+, ω−) + min∆φ Pω(ω+, ω−)
. (3.12)

With this definition, we must have

Pω(ω+, ω−) =
1

2
|Ψω(ω+, ω−)|2×

[
1−V(ω+, ω−) cos(φω,s(ω+)− φω,s(ω−))

]
. (3.13)

Let us note that the phase offset∆φ is just a notational convenience for expressing a range
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of values the cosine can take if no assumptions are made about φs,ω(ωs).

Lastly, since in the experiment we will use broadband photons (ca. 10 nm spectral width),

it is sometimes more convenient to work in wavelengths and not frequencies. We shall fur-

ther make such conversions implicitly.

3.3.3 Resonant bandwidth-mismatched light-matter interaction

Considering the light-matter interaction in our experiment we shall employ a simple model

of two-level atoms and a single Lorentzian resonance line – a good approximation for a

bandwidth-mismatched interaction in hot 87Rb vapor, previously employed in a similar

context in ref. [145]. The signal photon propagates through the distanceL of the atomic

medium. In the classical picture, during the interaction, each spectral component of the

electric field is modified

E(ω) → E(ω) exp
[ −OD(T )

1− i(ω − ω0)τ(T )

]
, (3.14)

where for the vapor temperature T , OD(T ) is the optical depth and τ(T ) denotes the

Doppler-broadened excited state lifetime. For OD and τ calculation details see section

3.6.1. For employed 87Rb temperatures τ(T )will be in the range of 215 ps to 240 ps.

Let us consider the absorptive and dispersive parts of the interaction

Re
[ −OD(T )

1− i(ω − ω0)τ

]
= −OD(T )× 1

1 + τ(T )2(ω − ω0)2
, (3.15)

Im
[ −OD(T )

1− i(ω − ω0)τ

]
= −OD(T )× τ(T )(ω − ω0)

1 + τ(T )2(ω − ω0)2
≡ φs,ω(ω). (3.16)

Since there is a large mismatch between the spectral bandwidth of the photon and the tran-

sition width, for the majority of the spectral components of the electric field we have (ω −

61



ω0)τ(T ) ≫ 1. At the same time Eq. (3.15) shows that as long as (ω − ω0)
2τ(T )2 ≫ OD

we can neglect the absorption. With the experimental bandwidth of ca. 5 THz (10 nm) for

the photon and 1/τ(T ) ≈ 500 MHz even with very high optical depths this conditions

will be fulfilled (the left-hand side reads 108). We can convert the phase φs,ω(ωs) to wave-

lengths φs(λ) by substituting (ω−ω0) = −2πc(λ− λ0)/λ
2
0, with c denoting the speed of

light, hence

φs(λ) = OD× x(λ)

1 + x(λ)2
, (3.17)

where x(λ) = 2πτc(λ − λ0)/λ
2
0 with λ0 = 795 nm corresponding to the wavelength

of the D1 87Rb line. Finally, since we are describing a twin-photon state, instead of mod-

ifying the spectral components of the electric field, we shall impose the spectral phase of

Eq. (3.17) onto the two-photon wavefunction (see Eq. (3.7)).

3.4 Experiment

3.4.1 Setup

For the generation of twin-photon states of light, we used a similar setup to the one de-

scribed in Chapter 2. A notable exception is that now signal and idler (reference) photons

are coupled to single-mode polarization-maintaining fibers (Thorlabs P3-780PM) i.e. a pair

of transverse modes is selected from the emission cone.

For coupling, we employed custom-made adjustable collimators based on an aspheric

lens with a numerical aperture of 0.5 and a focal length of 8mm. The mode width (beam

waist) was initially selected
√
2wider than the pump waist. Fine-tuning of the coupled

mode was done by observing in real-time single and coincident photon counts for signal

and idler.

For photon counting during calibration, we used avalanche photodiodes (Excelitas
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(a)
(b)

(c)

Figure 3.3: Photographs. (a) FPGA development board National Instruments myRIO‐1900 with a
custom input/output board attached, used for timetagging signals from single‐photon avalanche
photodiodes. (b) LabView program interface for live preview of the photon count statistic. (c) Frag‐
ment of the experimental setup showing a mounted BBO crystal for SPDC, blue pump filtering, and
fiber coupling of the SPDC emission.

SPCM-AQ4C) together with a custom time-tagger implemented in a high-level FPGA de-

vice (National Instruments MyRIO, LabView software) with an added input/output board

with proper terminations. Photographs of the FPGA and the SPDC setup together with a

screenshot from the LabView program are included in Fig. 3.3.

We fine-tuned the photon source by maximizing the efficiency η estimated with a reference-

free method (see section 2.3.5) and given by Eq. (2.16). The pump power was adjusted to

keep the excitation probability low χwhile keeping a reasonable number of single counts

– around 5× 104 cps signal and idler each. The excitation probability level was moni-

tored indirectly by observing and keeping high the second-order intensity correlation g(2)

between signal and idler, calculated with per pulse quantities (and after subtraction of ac-

cidental coincidences – see sec. 2.3.3). The experimental setup is depicted in Fig. 3.4.

Ti:Sapphire laser produces 100 fs pulses with a central wavelength of 795 nm at a repeti-
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Figure 3.4: (a) State preparation. Ultrashort pulses from a Ti:Sapphire laser are frequency‐doubled
and used to pump a type‐I SPDC (BBO). Pairs of photons from the SPDC are spectrally filtered (IF)
and coupled to single‐mode fibers (SM). (b) Main setup. Signal and idler (reference) photons are
interfered on an equivalent of a 50/50 balanced beamsplitter implemented using the polariza‐
tion DoF. Before interfering the signal photon probes a glass cell with hot 87Rb vapor. Output
ports of the interferometer (±) undergo spectrally‐resolved single‐photon counting with a diffrac‐
tion grating‐based spectrometer employing our custom camera as the detector. BBO‐SHG – BBO
crystal for second harmonic generation (SHG). DM (DMB) – dichroic mirro optimized for high re‐
flectance around 800nm (400nm) wavelength. IF (IFB) – interference filter with a central wave‐
length around 800nm (400nm). HWP (QWP) – half‐wave (quarter‐wave) plate. PBS – polarizing
beamsplitter. f1, f2 – lens.

tion rate of frep = 80MHz and with an average power of ca. 3W. The pulses undergo

second harmonic generation in a BBO crystal (0.5mm length) producing around 100mW

of power at a wavelength of 397.5 nm. The red pump is filtered with a multiple-reflection

stack of dichroic mirrors and an interference filter (central wavelength of 400 nm, FWHM
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Figure 3.5: Photographs of the experimental setup fragments. (a) Insulated (aluminum foil and
polyethylene foam) 87Rb vapor cell with a flexible resistive‐foil heater wrapped around the cell.
(b) Two‐photon interferometer [upper part of Fig. 3.4 (b)] (c) Single‐photon spectrally‐resolved de‐
tection [lower part of Fig. 3.4 (b)]

of 10 nm). The blue beam is focused (70 µm beam waist radius) in a second BBO crystal

(2mm length) pumping type-I non-collinear SPDC. Produced pairs of photons are spec-

trally filtered with a slightly tilted interference filter (central wavelength of 797.6 nm as

measured and of 800 nm nominal, FWHM of 10 nm). Signal and idler photons are cou-

pled to single-mode fibers and enter the main part of the setup – the two-photon interfer-

ometer. In the main part, the signal and idler (reference) undergo the two-photon inter-

ference. Before interfering the signal photon interacts with a hot 87Rb vapor. Let us begin

with the interferometer and detection and then come back to the interaction.

Since a balanced 50/50 (or close to) beamsplitter is rare and the splitting ratio is heavily

wavelength-dependent, we use the polarization degree of freedom as an auxiliary and im-

plement the 50/50 BS with polarization optics. Single and idler polarizations are already

linear – they are aligned to be so in the first part of the setup (and matched with the slow

axis of the single-mode polarization-maintaining fiber). The polarizations are rotated with

half-wave plates (HWP) to match the horizontal (H, signal) and vertical (V, idler) polar-

ization of a polarizing beamsplitter (PBS). This way, spatial modes of signal and idler are

overlapped on the PBS and leave through a single port. A subsequent HWP rotates the po-
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larization by 45° to produce± superpositions of signal and idler in the H, V polarization

basis. Finally, a second PBS separates H and V polarizations (and hence the+ and the−

superposition) spatially. The first PBS is far-field imaged onto a mirror (− port) or a D-

shaped mirror (+) port with two lenses (one each± port) of f1 = 150mm focal length.

The mirrors are far-field imaged (f1) onto a diffraction grating (1200 lines/mm, 750 nm

blaze). Additional HWPs before the diffraction grating set the polarizations perpendicular

to the grating grooves for maximal diffraction efficiency. The grating is mounted close to

the Littrow configuration. Finally, the first diffraction order is far-field imaged onto our

single-photon camera with a lens of f2 = 300mm focal length. Mirrors placed between f1

lenses allow to spatially separate the regions corresponding to± ports in the camera sensor

plane. The separation is done on the same axis as the spectral dispersion (this reduces the

height of the required camera frame and hence increases the acquisition speed – c.f. ch. 1).

The± spatial modes correspond to 140× 5 px in the camera frame. The longer dimension

is along the spectral dispersion λ±, the shorter is integrated over during the data analysis.

Acquisition speed is set to 8.2× 104 frames per second. The image intensifier gating time

is tg = 11 µswhich corresponds toR = freptg = 880 laser pulses per frame. In each

frame, we observe on average n̄ ≈ 0.2 photons.

Before entering the two-photon interferometer, the signal photon passes through a cylin-

drical glass cell (1∈ in diameter, 5 cm long) along its longitudinal axis. The cell is filled

with 87Rb vapor, wrapped in a flexible foil resistive heater, aluminum foil, and polyethy-

lene foam for insulation. A thermocouple is mounted close to the glass surface to monitor

the cell temperature. The current through the heater is adjusted for a desired steady-state

temperature with little variation observed. No active thermostatic control was found to

be required. However, it is worth noting that the experimental setup was enclosed in a

cardboard container, the whole optical table was surrounded by heavy curtains, and the
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conditions in the laboratory room (temperature, humidity, etc.) remained fairly constant

throughout the measurement periods. The cell temperatures were between 86 °C and

188 °C corresponding to optical depths between ca. 20 and ca. 4.6× 103, respectively

(c.f. sec. 3.6.1). Photographs of the parts of the two-photon interferometer are depicted

in Fig. 3.5.

The interaction of the signal photon and the 87Rb vapor can be described by impos-

ing a spectral phase φs(λ), given by Eq. (3.17) onto the two-photon wavefunction (see

Eq. (3.7)). A purely dispersive interaction is in general an approximation. However, let us

note that our measurement projects the post interaction state onto a subspace of at least one

photon in the+ port of the interferometer and at least one photon in the− port. Hence,

by design, only these pairs of photons for which neither signal nor reference photon is ab-

sorbed contribute to the signal – the measurement post-selects purely dispersively inter-

acting signal photons. This is true as long as the SPDC is weakly pumped and there is no

significant contribution of the multi-photon terms.

3.4.2 Measurement

We will consider the coincidence maps collected by observing the± port of the two-photon

interferometer with spectral resolution. Each frame has two regions corresponding to each

port and within a region subsequent pixels correspond to different spectral components.

We shall denote by n(λ±) the number of registered photons at a given wavelength of the

± port (where we implicitly mean a small range of wavelengths around the nominal value,

limited by the spectrometer resolution). Since the camera is not photon-number-resolving

(in each pixel) and each region is integrated along the smaller (not spectrally dispersed) di-

mension (of 5 px), we have 0 ≤ n(λ±) ≤ 5 in each frame. All averages ⟨.⟩ are henceforth

over the collection of observed frames.
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An unprocessed (raw) coincidence map

R(λ+, λ−) = ⟨n(λ+)n(λ−)⟩ (3.18)

is a histogram of events where within a single frame a photon is observed at λ+ and another

at λ−. Since each camera frame corresponds in time to ca. 880 laser pulses, the contribut-

ing photons may not originate from the same temporal mode. Such events are accidental

coincidences and they substantially reduce the signal-to-noise ratio of the raw map. Luck-

ily, the average of the accidental coincidences distribution can be calculated and subtracted.

Let us consider a noiseless, ideal-visibility scenario. The photon number covariance reads

⟨n(λ+)n(λ−)⟩ − ⟨n(λ+)⟩⟨n(λ−)⟩ =

RPλ(λ+, λ−)χη
2 +R(R− 1)χ2η2 −R2χ2η2 ≈ RPλ(λ+, λ−)χη

2, (3.19)

where Pλ is given by Eq. 3.10 after ω → λ conversion, the termRPc(λ+, λ−)χη
2 corre-

sponds to coincidences from the same temporal mode, while the termR(R − 1)χ2η2 for

largeR is roughly equal to the experimentally estimated average of the accidental coinci-

dences distribution

A(λ+, λ−) := ⟨n(λ+)⟩⟨n(λ−)⟩ = R2χ2η2, (3.20)

where the last equality holds in this idealized scenario.

Hence, from the raw coincidence map, we subtract the estimate of the accidental coinci-

dences to get the (processed) coincidence map

C(λ+, λ−) = R(λ+, λ−)−A(λ+, λ−). (3.21)
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3.5 Results
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Figure 3.6: Coincidence maps for spectrally‐resolved two‐photon interference with signal photon
interacting with hot 87Rb vapor at a range of temperatures (a) T1 = 188 ◦C, (b) T2 = 174 ◦C,
(c) T3 = 86 ◦C. Experimental results (photon number covariance) are depicted in the left‐most col‐
umn. The central column represents the result of a fitted theoretical model (normalized join spectral
intensity) with the visibility V set to 100% for presentation. The right‐most column presents the 1‐
dimensional spectral phase φs(λ−λ0) modulo 2π, corresponding to the fitted model. Coordinates
are relative to the D1 line wavelength λ0 = 795 nm in 87Rb.
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Experimental results have been depicted in Fig. 3.6. Coincidence maps were measured

for 3 distinct temperatures of the 87Rb cell T1 = 188 ◦C, T2 = 174 ◦C, and T3 =

86 ◦C. A theoretical model, given by Eq. (3.13), has been fitted to the data. The fidelity

0 ≤ F ≤ 1 [146] between the experimental and fitted results was found to be 94%,

86%, 89% for T1, T2 and T3, respectively. For the details of fidelity calculations see sec.

3.6.3. The optical depths corresponding to the best model fit were OD(T1) = 4.6 × 103,

OD(T2) = 2.6 × 103 and OD(T3) ≈ 20 and are in a good agreement with independent

calculation (c.f. sec. 3.6.1) for the measured temperatures.

A notable feature of all maps is that the coincidences are concentrated along the anti-

diagonal stripe. This shape is a result of the JSI |Ψ(λ+, λ−)|2 of the twin-photon state we

used and is generally a hallmark of spectral correlations between the signal and idler pho-

tons. For a comparison with simulated results assuming uncorrelated photon pairs, see sec.

3.6.4.

A cross-like shape at λ0 stems from a very rapid variation of the spectral phase near the

resonance, beyond the spectrometer resolution. In such a case, fast fringes (visible in the

simulated maps) are blurred due to the coincidences at each spectral point in this region

being phase-averaged.

Notably, the phase sign flips around λ0, as depicted in the right-most column of Fig. 3.6,

and described by Eq. (3.17). For higher temperatures (and hence optical depths), the foot-

print of the interaction is most pronounced. Its effects are visible several nm (order of a few

THz) from the resonance line, even though the resonance itself is only ca. 500MHzwide.

Nevertheless, with lower temperatures the presence of 87Rb is still distinctly visible, even

with comparatively low optical depth and a peak-to-peak variation of the spectral phase of

only 20 rad. Such a regime of parameters could be interesting in the non-destructive mete-

orological context for the task of binary hypothesis testing for the presence or absence of a
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sample.

Let us note, that even though in fitting a model we assumed a prior knowledge of phase

profile shape φs(λ), in the absence of such assumptions the phase could still be recon-

structed. The problem is analogous to the processing of classical interferograms and as

such holographic reconstruction techniques [147, 148] can be adapted to its solving. We

briefly investigate a very simple Fourier-domain-based reconstruction of φs(λ+) − φs(λ−)

in section 3.6.5.

Finally, let us consider the experimental visibility of the two-photon interferometer. The

visibility is not only a measure of the setup quality and a sign of the appropriate form of the

two-photon state, but it can also carry valuable information if calculated locally V(λ+, λ−).

Note that the 2-dimensional argument φs(λ+)−φs(λ−) of the cosine term in Eq. (3.13) is

an abundant representation of a 1-dimensional φs(λ) and in its form ensures the cos func-

tion cannot stay constant over the wavelength range of φs(λ) except for a special case of

Pc = 0. This way, if V(λ+, λ−) is close to 0 over extended regions where coincidences are

present Pc(λ+, λ−) ̸= 0, it is a hallmark of fast phase oscillations in this regime which are

below the spectrometer resolution and average the cos term to 0. With this observation, we

can infer the presence of sub-resolution spectral features. The experimental measurement of

the local visibility has been described in sec. 3.6.2.
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3.6 Methods and discussion

3.6.1 Rb optical depth calculation

The definition of optical depth may vary depending on the context. In this work we define

OD as follows. Let us follow [149] and begin with 87Rb vapor pressure P given in Torrs

log10 P (T ) = 15.882 53− 4529.635

T
+ 0.000 586 63 T − 2.991 38 log10 T. (3.22)

The density of atoms reads

n =
P (T )

kBT
, (3.23)

with kB denoting the Boltzmann constant. The optical density is given by

α(T ) = nσ(T ), (3.24)

where

σ(T ) =
ω0τ(T )µ

2

2ϵ0cℏ
, (3.25)

with µ = 1.4646× 10−29 C ·m denoting the effective dipole moment of the D1 transition

under the conditions of large detuning, ω0 the angular frequency of this transition, and

τ(T ) the Doppler-broadened lifetime of the excited state. The latter is given by [145]

τ(T ) =
1

∆(T )
, (3.26)

with

∆(T ) =
2ω0

c

√
2kBT

m
, (3.27)
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where the 87Rbmass ism = 1.443 × 10−25 kg. In the relevant range of temperatures

between 86 °C and 188 °Cwe have τ(T ) ranging from 215 ps to 240 ps.

With these quantities at hand, the optical depth is given as the optical density integrated

along the interaction path i.e. the 87Rb cell length L = 5 cm. Assuming homogeneous

optical density along the cell we have

OD =
P (T )

(kBT )3/2
µ2

4ϵ0ℏ

√
m

2
L. (3.28)

3.6.2 Visibility

We will estimate the local visibility directly from the coincidence maps C(λ+, λ−) collected

in the main experiment. Let us demonstrate the process with the data for a cell temperature

of T1 = 188 °C. Subsequent stages of the data analysis are depicted in Fig. 3.7. The initial

map is filtered to mitigate outliers and parceled into squared regions of a chosen side length

between 1 nm and 2.5 nm. Within each region, the local visibility is estimated as

Vi,j(Ci,j) =
max Ci,j −min Ci,j
max Ci,j +min Ci,j

. (3.29)

Further, we calculate the average visibility over the regions i, j which satisfy 0 ≤ Vi,j ≤

1. This condition filters out regions where the JSI of the initial state is very low, hence no

significant data can be collected.

For the analysis with regions of 1 nm side length we get V ≈ 0.69 ± 0.16, V ≈ 0.79 ±

0.12 and V ≈ 0.88 ± 0.09 for T1 = 188 ◦C, T2 = 174 ◦C and T3 = 86 ◦C, respectively.

The uncertainties correspond to a standard deviation over the regions. For comparison,

using classical light (pair of coherent states and averaging the results over the phase between

the pair) the maximal attainable visibility of two-photon interference is 50% [150].
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Figure 3.7: Stages of local visibility estimation. (a) The initial coincidence map. (b) The map after
Gaussian filtering (Gaussian scale parameter σ = 3.6 × 10−2 nm). (c)‐(f) The filtered map is
further analyzed in smaller square regions Ci,j with a side of (c) 1nm, (d) 1.43nm (d), (e) 2nm, (f)
2.5nm. In each region, the local visibility is calculated using Eq. (3.29)
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3.6.3 Fidelity

For a quantitative comparison between the experimental results and the theoretical predic-

tion, we employ fidelity 0≤ F ≤ 1 calculated for a pair of maps: a normalized coincidence

maps from the experiment c(λ+, λ−) and the best fit of the theoretical model p(λ+, λ−).

Using [146]

F =
∑
λ+,λ−

√
c(λ+, λ−)p(λ+, λ−), (3.30)

c(λ+, λ−) =
C(λ+, λ−)∑

λ+,λ−
C(λ+, λ−)

, (3.31)

p(λ+, λ−) =
Pc(λ+, λ−)∑

λ+,λ−
Pc(λ+, λ−)

. (3.32)

we haveF of 94%, 86% and 89% for T1, T2 and T3, respectively.

3.6.4 Join spectral intensity, uncorrelated and correlated photons

The probability of observing a coincidence Pc(λ+, λ−), given by Eq. (3.10), consists of a

product of two terms: the interference pattern∝ 1 − cos(φs(λ+)− φs(λ−)) and the

join spectral intensity of the initial state |Ψ(λ+, λ−)|2. The latter depends on the SPDC

source. We will compare simulated coincidence maps with a JSI of our state, and with a JSI

for spectrally uncorrelated photons. The two terms (JSI and interference pattern) for these

two scenarios are depicted in Fig. 3.8.

For the uncorrelated case, the JSI has a product form

|Ψ(λs, λi)|2 = |Ψs(λs)|2 × |Ψi(λi)|2, (3.33)

with s (i) index denoting the signal (idler) photon. For this example, we take a special case
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Figure 3.8: (a), (b) Simulated joint spectral intensity |Ψ(λ+, λ−)|2 normalized to a unit maximum,
for (a) spectrally correlated photons (b) spectrally uncorrelated photons. (c), (d) The interference
pattern which multiplies the JSI to produce final coincidence maps [(e), (f)].

ofΨs(λ) = Ψi(λ), and assume an isotropic 2-dimensional Gaussian forΨs(λ)with the

center at 796.7 nm and the Gaussian scale parameter σ = 1.2 nm.

Let us note that experimentally the JSI can be measured in a similar setup to our spectrally-

resolving two-photon interferometer, albeit without actually interfering the photons. In

our polarization-based implementation, the alteration merely amounts to rotating the half-

wave plate between the two polarizing beamsplitters of the setup, so that the photons leave
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through different ports of the second PBS.

3.6.5 Phase reconstructionwithout prior knowledge
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Figure 3.9: (a) Coincidence map collected in the experiment for T1 = 188 ◦C. (b) Modulus squared
of the map’s Fourier Transform. A sharp filterH(k+, k−) leaves only the part with positive fre‐
quencies (dashed rectangle). (c) Modulus and (d) retrieved phase modulo π of the inverse Fourier
transform calculated after filtering. Selected units are omitted for clarity.

If no prior information on the structure of the spectral phase φ(λ) is assumed, a method

to reconstruct this phase from a coincidence map C(λ+, λ−) is necessary. In the expression
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for the coincidence probability, the total 2-dimensional phaseΦ(λ+, λ−) = φ(λ+) −

φ(λ−) appears in a cosine term in a form akin to encountered e.g. in holography. Hence,

standard methods developed for similar problems can be modified for phase reconstruc-

tion. Having the 2-dimensional phaseΦ(λ+, λ−), we can fix either of its arguments to

get the spectral phase up to an offset e.g. fixing λ− we get φ(λ+)with an offset given by

−φ(λ−). The offset can be accounted for by observing that for λ− = λ+ the we must have

φ(λ+)= φ(λ−). Otherwise, we can also differentiate each of the rows and columns, aver-

age the result, and integrate back assuming that sufficiently far from resonance the phase

should be 0.

A simple method to reconstructΦ(λ+, λ−) starts with a real-valued 2-dimensional sig-

nal∝ cos[Φ(λ+, λ−)] and converts it to its analytical form by taking a Fourier transform,

leaving only the positive frequencies and inverting the transform. Hence, we get a complex

signal exp[iΦ(λ+, λ−)]which argument corresponds to the reconstructed phase (modulo

π)

Φ(λ+, λ−) mod π = arg exp[iΦ(λ+, λ−)]. (3.34)

The task of 2-dimensional phase unwrapping is not obvious; nevertheless, it is a commonly

encountered problem and state-of-the-art unwrapping methods exist [148].

An alternative method to retrieveΦ(λ+, λ−) is to add a known delay δt (on the order of

10 ps i.e. a few mm longer optical path) to one of the photons. This will produce equidis-

tant fringes in the coincidence map, which in the Fourier domain shift the signal away from

the origin enabling better filtering and more robust reconstruction. The linear spectral

phase from the delay together with the unknown phase will produce a signal of the follow-

ing form

∝ cos[Φ(λ+, λ−) + k(λ+ − λ−)] (3.35)
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for some k ∝ δt. The linear phase (a shift in the Fourier domain) can be removed by shift-

ing the filtered fragment back to its origin, or by first collecting a reference measurement

without the source of φ(λ). The Fourier-domain signal would then be divided by the refer-

ence.

A general limitation of the method with linear phase is its limited bandwidth equal at

most to twice the Fourier-domain shift (since otherwise the filter would encompass also

negative frequencies). Nevertheless, the approach is advantageous in terms of signal-to-

noise ratio if the signal in the Fourier domain is fairly localized e.g. a slowly varying or

dominantly periodic φ(λ), and hence can be well filtered. In our particular case, the phase

changes very rapidly near the resonance and very slowly far away, covering a very large area

in the Fourier domain (relative to the scale set by the resolution of the spectrometer).

We performed an exemplary reconstruction of the 2-dimensional phase using the Fourier-

filtering method without added delay. The coincidence map is taken from the T1 = 188 ◦C

dataset. The process is depicted in Fig. 3.9. For filtering we choose a sharp filterH(k+, k−) =

Θ(k+)Θ(k−), withΘ(k) being the Heaviside Step Function.

3.6.6 Two or more photons per pixel

Since a single pixel of our single-photon camera is not photon number resolving, let us con-

sider the possibility of an event when two or more photons should be detected at the same

pixel (misclassification).

In the experiment we observe an average of n̄ ≈ 0.2 photons per frame i.e. perA =

2 × 5 × 140 px = 1400 px pixels. Each frame exposure corresponds toR = 880 laser

pulses. On average there is ρ = n̄/(RA) ≈ 1.6 × 10−7 photons per px per pulse. The
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probability that more than 1 photons inR repetitions will be observed in a single pixel is

P = 1− [Rρ(1− ρ)R−1 + (1− ρ)R] ≈ 10−8, (3.36)

with the first term in square brackets being the probability of observing one photon and

the second term the probability of observing no photons. The average number of misclassi-

fications per frame is given by

P × A ≈ 1.4× 10−5. (3.37)

Hence, the effect is not very significant.

3.6.7 Comparisonwith homodyne tomography

&

coherent LO reference photoncoherent LO

(a) (b) (c)

Figure 3.10: Schematic depiction of different tomographic techniques in the spectro‐temporal do‐
main. (a), (b) balanced homodyne detector with a shaped or swept strong local oscillator (LO) (a)
with a bucket detector (b) with a spectrally‐resolving multi‐pixel detector. (c) Spectrally‐resolved
two‐photon interference. A single reference photon is used. Detectors are photon counting.

We shall briefly compare spectrally-resolved two-photon interference with homodyne

detection either with spectral resolution or without, for the task of spectral characterization

of a single photon.

As depicted in Fig. 3.10 in all cases the investigated photon is interfered on a balanced
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beamsplitter with some kind of a reference state of light.

Figure 3.10 (a) essentially presents a simplified version of the experiment of Costanzo

et al. [137]. There the reference is in the form of a strong local oscillator (a coherent state).

The detection is in the form of a balanced homodyne detector which consists of two quadratic-

response detectors (e.g. photodiodes) observing the beamsplitter outputs, and an electronic

subtraction of the signals. Such a homodyne detector measures a selected (with the LO

phase relative to the measured optical signal) quadrature of the investigated field [151].

Since the detectors are not spectrally-resolving, the contribution from all spectral compo-

nents are added to form the detector output i.e. the output signal depends on how closely

the spectral mode of the LOmatches that of the spectral wavefunction of the investigated

photon. Conversely, we can optimize or sweep the shape of the LO to find a good match-

ing and infer the photon’s spectral wavefunction shape. Let us note for completeness that

since a single photon has a uniform phase distribution, ultimately we measure the homo-

dyne current variance.

Fig. 3.10 (b) extends the homodyne detection with spectrally-resolving detectors. Sim-

ilarly, as with spectrally-resolved two-photon interference, the added spectral resolution

enables localization of the differences between the LO spectral shape and the photon wave-

function. Nevertheless, since the homodyne detector in the best case is shot-noise-limited,

it may be challenging to obtain a sufficiently high signal-to-noise ratio with the signal

spread over many pixels.

Finally, for reference Fig. 3.10 (c) depicts the spectrally-resolved two-photon interfer-

ence. We shall now consider homodyne detection and two-photon interference both with-

out spectral resolution. We will consider the photon to be almost identical to the reference

(photon or LO) and try to estimate the residual distinguishability. This is a vast simplifica-

tion relative to the experimental setup; nevertheless, being analytically tractable it will allow
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us to compare homodyning and two-photon interference on the grounds of asymptotic

estimation theory.

Homodyne detection

Let us begin with a more quantitative description of the homodyne measurement. We de-

fine the indistinguishability ξ between the LOmode ψLO(λ) and the photon wavefunction

ψs(λ)

ξ =

∣∣∣∣∫ dλψs(λ)ψLO(λ)
∗
∣∣∣∣2. (3.38)

Assuming the mode functions have identical modules and only differ in a phase profile we

have φs(λ)we get:

ξ =

∣∣∣∣∫ dλ |ψs(λ)|2 exp(iφs(λ))

∣∣∣∣2. (3.39)

Homodyning measures a selected quadrature. Since the photon has a uniform phase dis-

tribution, all quadratures are equiprobable. The probability of observing a given quadra-

ture is given by [7]:

P1(x) =
1

2
√
π
H1(x)

2 exp
(
−x2

)
, (3.40)

withH1(x) denoting the first Hermite polynomial and where we use dimensionless quan-

tities. Let us simulate the distinguishability of the signal photon and the LO by inserting

a beamsplitter in the path of the signal photon. The beamsplitter couples a vacuum com-

ponent and introduces loss [152]. This way, the probability density of vacuum along any

quadrature reads:

Pvac(x) =
1√
π
exp

(
−x2

)
. (3.41)

Finally, the measurement outcomes (homodyne current values) are distributed according to
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P (x) = ξP1(x) + (1− ξ)Pvac(x). (3.42)

Two-photon interference without spectral resolution

For two-photon interference without spectral resolution let us define the indistinguishabil-

ity V as

V =

∫∫
dλ+ dλ− ψs(λ+)ψr(λ+)

∗ψs(λ−)
∗ψr(λ−), (3.43)

with ψs, ψr denoting the spectral wavefunction of the signal and reference photons, respec-

tively. Note that compared with the homodyne case we have ξ = V . With equal modules

of the wavefunctions and merely a phase profile difference φs(λ), we get

V =

∫∫
dλ+ dλ− |ψs(λ+)ψs(λ−)|2 exp [i(φs(λ+)− φs(λ−))] . (3.44)

The probability of detecting a coincidence between bucket single-photon detectors is then

Pc =
1

2
(1− VV ), (3.45)

with V denoting the intrinsic interference visibility (e.g. due to setup imperfections). If

we assume perfect detectors (i.e. no losses, no dark counts), in a single repetition of the

measurement we can observe at most a single coincidence, so there are two measurement

outcomes: no coincidence with a probability P0 = 1−Pc or a coincidence with probability

Pc.

Without dark counts, we can express the intrinsic interference visibility V in terms of the
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detections efficiency η and SPDC excitation probability χ as [153]

V = 2
[
(η − 2)2χ− 4

]
×

[
(η − 1)2χ− 1

][
4−4χ

(η−2)2χ−4
+
√

χ−1
(η−1)2χ−1

]
η2χ

{
[(η − 6)η + 6]χ+ 2

} . (3.46)

Assuming experimentally feasible values η = 90%, χ = 1.5× 10−2, we have V ≈99%.

Comparison on the grounds of estimation theory

With the measurements described, we can employ the asymptotic estimation theory to

compare the bounds on the estimation precision of the indistinguishability for both schemes.

Intuitively, since the homodyne case will involve maximization of an inherently noisy

homodyne current variance, while the two-photon interference will involve the mini-

mization of the coincidence count, in the regime of small residual indistinguishability

α = 1− ξ = 1− V ≪ 1we expect better performance for the latter.
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Figure 3.11: Fisher information per signal photon Fξ , FV for the task of estimating the indistin‐
guishability between the signal photon and a reference. (shom, V ) For two‐photon interference.
(homod, ξ) For homodyning. The intrinsic interference visibility for two‐photon interference was
taken as V = 99%.
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The variance of any locally unbiased estimator V̂ is limited by the Cramér–Rao bound:

∆2V̂ ≥ F−1
V , (3.47)

with FV denoting the Fisher information per single signal photon given by [154]

FV = (∂V logPc)
2Pc + (∂V logP0)

2P0 =
V2

1− V2V 2
. (3.48)

In the homodyne case, the Fisher information per signal photon is given by

Fξ =

∫
dx [∂ξ logP (x)]

2P (x), (3.49)

which can be expanded to

Fξ = −

√
2πe

1
2(

1
ξ
−1)

√
1
ξ
− 1erfc

(√
1
ξ
−1

√
2

)
+ 2ξ − 2

2(ξ − 1)ξ2
, (3.50)

with erfc(x) = 1− erf(x) and erf(x) being the error function.

The comparison of Fisher information for these two measurement schemes has been de-

picted in Fig. 3.11 in the logarithmic scale. Note that for small residual distinguishability

V = ξ ≈ 1 the two-photon interference outperforms the homodyning. The exact ad-

vantage depends on the intrinsic visibility level V . In this regime, the formulae can be series

expanded in α = 1− V = 1− ξ ≪ 1 to observe the scaling. We have for homodyning

Fα ∼ α−1/2 (3.51)
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while for the two-photon interference, the scaling is significantly improved

Fα ∼ α−1. (3.52)

Anecdotally, these scalings are similar to the well-known standard quantum limit and the

Heisenberg scaling.

Finally, let us note that in a general scenario of unknown V or ξ a hybrid adaptive method

combining homodyning and two-photon interference could be beneficial.

3.7 Conclusion

In this Chapter, we have described an experimental method to probe a spectral phase of a

single photon wavefunction. The method is based on a two-photon interferometer whose

outputs are observed with a spectrally-resolving single-photon detector. The method com-

pares the spectral wavefunction of the signal (interrogated) photon with a reference pho-

ton. If the signal is made to interact with a sample (in our case a hot 87Rb vapor) prior to

entering the setup, the method can be regarded as a form of dispersive spectroscopy. The

basic idea of spectrally-resolved two-photon interference is the extension of the Hong-Ou-

Mandel effect with the ability to observe where the differences between the wavefunction

are in the spectral degree of freedom i.e. resolving the coincidence rate in this DoF.

We have presented a proof-of-principle experiment together with a simple theoretical

description. A good agreement with the theory was observed. Further, we analyzed the

method’s performance and metrics, discussed the role of the spectral correlations between

the initial pair of photons, and proposed general phase reconstruction methods. Finally, in

the framework of asymptotic estimation theory, we compared the simplified two-photon

interference scheme with an equivalent homodyne measurement. The advantage of the for-
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mer was demonstrated in the regime of small deviations of the signal spectral wavefunction

shape from the reference.

This experiment can be regarded as demonstrating a unique combination of funda-

mental phenomena (single-photon zero-area pulses, Hong-Ou-Mandel effect, bandwidth-

mismatched interaction) but also as a proof-of-principle demonstration of non-destructive

spectroscopic sensing. Potentially, it may be also of interest for spectrally probing ultrafast

transient phenomena, such as picosecond-scale chemical reactions, since the signal photon

is in a very short temporal mode.
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4
Variable shearing interferometry

4.1 Foreword

Hitherto our experiments were concerned with non-classical light. Here we turn to classical

coherent states. Sometimes they will be highly attenuated so that the average number of

photons per mode is relatively close to 1. In such scenarios, we should refer to the single-

photon level.

Characterization of ultrafast pulses is a long-standing problem. The duration of a 100 fs
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and even a 10 ps pulse is way too short to directly measure even the temporal intensity

(although the research on fast photodetectors is very active, for instance in ref. [155] au-

thors demonstrated 265GHz bandwidth at telecom wavelengths). Ideally, we would like to

know not only the intensity but also the phase profile, i.e. characterize the complex electric

field envelope in time.

A plethora of methods have been developed to accomplish this task with probably the

most widespread being Spectral Phase Interferometry for Direct Electric-field Reconstruc-

tion (SPIDER) [156], Frequency-Resolved Optical Gating (FROG) [157], and their vari-

ants [158, 159]. Both methods employ non-linear optical interactions. FROG is a spec-

trographic method, while SPIDER is based on interferometry. Another interferometric

method – electro-optic shearing interferometry (EOIS) – is linear (in optical fields) and

employs electro-optic modulation instead of optical non-linear processes. The advantage is

higher sensitivity in the regime of single-photon level light, stemming mainly from the lack

of optical noise introduced in the non-linear interactions and avoiding their low conversion

efficiency. EOSI was first proposed byWong andWalmsley [160] and around 20 years later

demonstrated at the single-photon level [161–163].

Compared to FROG, SPIDER and EOSI scale better in terms of the measurement time.

Roughly forN temporal points at which the pulse is probed, FROG requiresO(N2)mea-

surements and SPIDER or EOSI onlyO(N). The advantage is due to the 2-dimensional

scan required in FROG and only a 1-dimensional for SPIDER and EOSI. Of course, as

with any scaling, the constant factor may be more significant in a given scenario.

Focusing on the near-infrared wavelengths (e.g. 795 nm) and the single-photon level

light, the most compatible method of the 3 is EOSI. However, in these circumstances,

EOSI would require a single-photon-sensitive spectrometer working in near-infrared. It

is certainly possible as demonstrated e.g. by our camera (albeit with low efficiency) or time-
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of-flight spectrometers [164] which however require a custom-made chirped fiber Bragg

grating (CFBG) prepared for a specific wavelength.

In this chapter, we explore an alternative approach with the potential of reducing the

cost and complexity of the characterization setup. The method, which we call Variable

Shearing Interferometry (VarSI) is, in essence, similar to EOSI, but employs a measurement

of the second-order intensity correlation between both interferometer outputs instead of

a spectrally-resolved measurement of a single output. Furthermore, as later described in

detail, the spectral shift introduced by the electro-optic modulation needs to be scanned

(hence a 2-dimensional scan is required).

The majority of the experimental work described in this chapter was carried out by

Stanisław Kurzyna andMarcin Jastrzębski (at that time BSc students). We were supported

on the theoretical side by Nicolas Fabre and on the experimental/technical side byWojciech

Wasilewski. Michał Parniak conceived the idea and supervised the project at a higher level.

Finally, the author of this thesis supervised the works at a more operational level, built parts

of the setup; wrote parts, and supported the development of the experiment control and

measurement software and data analysis; and wrote substantial parts of the manuscript.

Let us note that in parallel another method of ultrashort pulse characterization based on

spectral shift scanning was independently developed by Golestani et al. [165]. The authors

call the method Fourier transform Chronometry and demonstrate the measurement of the

ultrashort pulse width by scanning spectral shifts.

This chapter is based on ref. [166].
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4.2 Introduction

Although many methods of ultrashort pulse characterization have been described and

demonstrated, the task remains challenging. This is especially true for the single-photon

regime. Here we introduce a newmethod that directly measures the modulus of the short-

time Fourier transform (STFT) of the pulse.

The method is based on a measurement of the second-order intensity correlation func-

tion between the two outputs of a Mach-Zehnder-type interferometer. The interrogated

pulse enters the interferometer to be equally split into both arms. One arm contains a con-

trolled delay (e.g. motorized free-space delay line) while the second arm, an equivalent op-

eration in frequency i.e. spectral shift (implemented via time-dependent electro-optic phase

modulation). Spectral shift is the most challenging part of the setup. It is implemented

by imposing an optical phase that linearly changes in time (a direct result of time and fre-

quency being Fourier-conjugate variables, sometimes referred to as the ”Fourier Shift Theo-

rem”). In practice, the linear modulation is implemented with a sinusoidal waveform driv-

ing the electro-optic modulator (EOM) and by synchronizing the optical pulse with the

linear part of the sinusoid. Roughly a shift comparable to the spectral bandwidth of the

pulse is necessary, which requires high modulation frequency and high amplitude (power).

For each setting of the delay and spectral shift, the second-order intensity correlation

gives a single point of the STFTmodulus squared. The complex electric field of the pulse

can be then reconstructed using a modification of a standard algorithm (and with certain

ambiguities).

Notably, since VarSI is based on the second-order intensity correlation measurement, it

remains insensitive to the phase fluctuations between the interferometer arms. In the bright

light regime, the measurement is equivalent to estimating the visibility of the fringes.
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We experimentally demonstrate VarSI in the near-infrared (795 nm) including the elec-

tric field reconstruction for bright pulses and for weak single-photon level light.

4.3 Theory

4.3.1 Idea of VarSI

&

(a) (b)

Figure 4.1: (a) Simplified schematic of a VarSI interferometer. The interrogated pulse with elec‐
tric field E(t) enters the interferometer and is split on a balanced beamsplitter (BS) into its two
arms. One arm includes a controlled delay τ , and the other a spectral shift µ. Interferometric phase
between the arms is accounted for by φ(t). After temporal and spectral shifts the pulses are inter‐
fered on a second BS. Outputs of the interferometer are observed with quadratic photodetectors
(photodiodes or single‐photon‐counting detectors). Assuming a quickly fluctuating phase φ(t), the
second‐order intensity correlation function g(2)(µ, τ) for a certain setting of (µ, τ ) corresponds to

the modulus squared of the self‐gated short‐time Fourier transform
∣∣SE(t)(µ, τ)

∣∣2. (b) Depiction of
the temporal and spectral shift operations on the chronocyclic Wigner function of a coherent state
(red ‐ prior, blue ‐ posterior).

A simplified setup for VarSI is depicted in Fig. 4.1. Alike other methods based on spec-

tral shearing, the interrogated pulse with the electric field E(t) is split into two parts. One is

delay by τ , yielding E(t − τ). The other is shifted in frequency by µwhich gives E(t)eiµt.

The pulses interfere on a balanced beamsplitter (BS) and exit the interferometer through

the± ports. In EOSI one of the outputs would be observed with a spectrometer. However,

in VarSI both outputs are only monitored with bucket detectors. Notably, the bandwidth
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of the detectors can be very low. It is only necessary to resolve in time the interferometric

phase φ(t) fluctuations. We will assume that the detectors are averaging the signal over a

timescale T much longer than the pulse duration.

4.3.2 Classical case – analyzing fringe visibility

Let us start with the strong light regime. We will assume that the detectors (photodiodes) at

± ports produce a signal proportional to the time-integrated optical intensity

I± ≡ I±,T (t) ∝
∫ t+T/2

t−T/2

dt′ |E±(t′)|2. (4.1)

Fixing the interferometric phase φwe can expand this equation

I± ∝
+∞∫

−∞

dt|E(t)|2+
+∞∫

−∞

dt|E(t− τ)|2±2VRe

eiφ +∞∫
−∞

dt E(t)E∗(t− τ)eiµt

 , (4.2)

with 0 ≤ V ≤ 1 denoting the intrinsic visibility of the interference. For clarity of the

reasoning, we will assume V = 1 and note that this assumption does not change the quali-

tative result.

In Eq. (4.2) all relevant information is contained in the last term (interference term). In

particular, it can be directly expressed as the self-gated short-time Fourier transform

SE(t)(µ, τ) =
1√
2π

+∞∫
−∞

dtE(t)E∗(t− τ) exp(iµt). (4.3)

In a more general scenario, let us consider incoherent states of light characterized by the
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first-order coherence function

g(1)(t, τ) = ⟨E(t)E∗(t− τ)⟩, (4.4)

with ⟨· · · ⟩ denoting an average over a statistical ensemble. We then have the following rela-

tion between the STFT and g(1).

SE(t)(µ, τ) =
1√
2π

+∞∫
−∞

dt g(1)(t, τ)eiµt. (4.5)

Hence, VarSI can be applied regardless of the coherence of light.

To measure a 2-dimensional map of the STFTmodulus squared, we will scan the de-

lay τ ∈ {τj}j=1...M and the spectral shift µ ∈ {µk}k=1...N . The interference term of

Eq. (4.2) can be isolated by taking the difference between the intensities observed at the±

ports I(j,k)+ − I
(j,k)
− . Importantly, we will assume that φ fluctuates slowly relative to the

averaging time of the detectors T and has a uniform probability distribution. We observe

a time trace of the detector signal covering the whole range of φ. Calculating the standard

deviation and averaging over the phase we essentially obtain the measured interference visi-

bility (relative to the intrinsic visibility)

√
⟨[Re(eiφSE(t)(µk, τj))]2⟩φ = |SE(t)(µk, τj)|2, (4.6)

equivalent to the squared modulus of the STFT evaluated at (τj, µk). The measurement is

then repeated forM ×N points.
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4.3.3 Single-photon-level pulses

We shall now consider the scenario of dim light (single-photon level) where the interference

fringes cannot be directly observed (in contrast to Eq. 4.2). In other words, not enough

light can be collected for a reasonable signal-to-noise ratio within a time period when the

phase φ(t) remains relatively stable. We note that from the experimental perspective, rapid

scanning of the time delay (motorized delay line) introduces substantial phase instability,

and complicates any potential stabilization.

In this case, we will consider the second-order intensity correlation function g(2)(µ, τ)

requiring only (again) that φ(t) remains stable for approximately the inverse of the pho-

todetector bandwidth T . Henceforth dropping the (j, k) indices, for each pair of shift (µ,

τ ) we average the product of detector intensities ⟨I+(t)I−(t)⟩φ to get

g(2)(µ, τ) =
⟨I+,T (t;µ, τ)I−,T (t;µ, τ)⟩φ

⟨I+,T (t;µ, τ)⟩φ⟨I−,T (t;µ, τ)⟩φ
= 1− 1

2
V

∣∣SE(t)(µ, τ)
∣∣2

(
∫ +∞
−∞ dt|E(t)|2)2

, (4.7)

where the average is again taken over the uniform distribution of φ. The factor of 1/2 ap-

pears from the phase averaging. It reflects a general behavior – the visibility in the second-

order interferometry is limited to a maximum of 1/2 for coherent states. For the full deriva-

tion of Eq. (4.7) see section 4.6.1.

4.3.4 Exemplary simulated spectrograms

For a quantitative overview of how the collected spectrograms (modulus square of STFT)

may look, we present an exemplary numerical calculation in Fig. 4.2. Gaussian shape of the

temporal pulse envelope is assumed. Cases of a positive/negative chirp (second order spec-

tral phase) and of third order spectral phase are depicted. We note that while the sign of the
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Figure 4.2: Exemplary simulated spectrograms (modulus squared STFT
∣∣SE(t)(µ, τ)

∣∣2) calculated
numerically for Gaussian pulses. (a) Positively chirped pulse. (b) Negativey chirped pulse. (c) Pulse
with a third‐order spectral phase.

second-order spectral phase can be directly inferred from the map, it remains ambiguous

for the third-order phase.

4.3.5 Relation to ChronocyclicWigner Function

Self-gated STFT is one of the bilinear time-frequency distributions (also known as Cohen’s

class distributions) [167]. As such it is directly connected to the Chronocyclic Wigner

Function (CWF) which is more widely recognized and used in optics. CWF has many intu-

itive properties and provides useful visualizations of the spectro-temporal mode structure

and its transformations [168].

With the CWF defined as

W (ω, t) =
1

2π

+∞∫
−∞

dt′ E
(
t+

t′

2

)
E∗

(
t− t′

2

)
eiωt

′
, (4.8)

the relation between STFT and CWF is via a two-dimensional Fourier transform and mul-

tiplication by a phase term:

SE(t)(µ, τ) =
√
2πF t→µ

ω→τ
[W (ω, t)]e−

iµτ
2 . (4.9)
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This way, the modulus squared reads

∣∣SE(t)(µ, τ)
∣∣2 = 2πF t→µ

ω→τ
[W (ω, t)]F∗

t→µ
ω→τ

[W (ω, t)], (4.10)

which can be further simplified using the convolution theorem

∣∣SE(t)(µ, τ)
∣∣2 = 2πF t→µ

ω→τ
[WE(t)(ω, t) ∗WE(−t)(ω, t)]. (4.11)

Hence, the STFTmodulus squared is just the two-dimensional Fourier transform of a con-

volution between a CWF of the pulse and a CWF of a time-reversed pulse.

4.3.6 The reconstruction of the pulse complex electric field

The mapping of the pulse electric field to the spectrogram

M : E(t) →
∣∣SE(t)(µ, τ)

∣∣2 (4.12)

is not directly invertible. Nevertheless, the problem of finding E(t) given
∣∣SE(t)(µ, τ)

∣∣2 is
mathematically equivalent to the standard inverse problem encountered in radar remote

sensing. As this is an active area of research, a range of good algorithms exist and the recon-

struction ambiguities are well-understood [169].

Assuming E(t) described a time-limited pulse (i.e. with finite support) the ambiguities

encompass only:

1. global phase,

2. reflection,

3. spectral or temporal shift,
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with the last two equivalently corresponding to the sign of the cubic and linear spectral

phase, respectively.

For the complex electric field reconstruction we modify the COPRA phase retrieval

algorithm developed and described by Geib et al. [170]. The original algorithm was devel-

oped for non-linear interferometric schemes of pulse characterization. As such it required

modifications to work with our form of the spectrogram. The details are described in sec-

tion 4.6.2.

4.4 Experimental setup

The experimental setup for VarSI has been depicted in Fig. 4.3. The test pulse is prepared

by spectrally filtering a 100 fs pulse from a Ti:Sapphire laser (SpectraPhysics MaiTai). The

filtering is implemented by mapping the spectral components onto transverse dimension

with a diffraction grating, far-field imaging the grating onto a slit with regulated width, and

reversing the process. The temporal delay τ is implemented via a motorized single-pass de-

lay line (moving a collimator). The spectral shift µ is obtained by modulating the temporal

phase of the signal light with an EOM. The optical pulse needs to be aligned with the lin-

ear part of the EOM driving waveform. The driving waveform is formed by synchronizing

a high-frequency (15GHz) generator to the original optical pulses repetition (80MHz).

Interferometric phase averaging is ensured by placing a mirror on a piezo actuator inside

the interferometer. For photon counting, we use superconducting detectors (idQuantique

ID281). For bright-light measurements above 100 µW we observe the root-mean-square of

the fringes visibility over one period of the piezo oscillation, to obtain
∣∣SE(t)

∣∣2. The exem-

plary signals in this regime are depicted in Fig. 4.4

For measurement at the single-photon level neutral-density filters are introduced to at-
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Figure 4.3: Schematic of the VarSI experimental setup. Near‐infrared (795nm) pulses (100 fs)
from a Ti:Sapphire laser are spectrally filtered (in the range of 48GHz to 96GHz) with a 4f setup
consisting of a pair of diffraction gratings and a telescope with a slit of controlled width placed in
the Fourier plane. The filtered pulse is attenuated to the single‐photon level (ca. 100µW) with
neutral‐density (ND) filters and enters the main VarSI interferometer implemented in a hybrid of
free space and fiber. The delay line within the interferometer consists of moving a collimator along
the propagation direction with a stepper‐motor‐driven stage. The spectral shift is implemented with
an electro‐optic phase modulator (EOM). Additionally, in one of the arms a mirror is mounted on a
piezoelectric actuator (PM) which is continuously driven with a single tone to ensure proper averag‐
ing over φ. Polarizations are adjusted with half‐wave plates (HWP) to match the axes of the EOM
and the polarization‐maintaining fibers. The final beamsplitter (BS) of the interferometer is imple‐
mented in fiber. For detection, we use either superconducting single‐photon detectors (SSPDs) or
photodiodes (PD). The radio frequency (RF) signal driving the EOM is obtained by optically driving
a photodiode with a fraction of the original femtosecond light. The photodiode signal is amplified
and clocks the high‐frequency generator. The generator’s output is variably attenuated with a mixer,
amplified, and drives the EOM.
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Figure 4.4: (a) Signal from phototiodes observing the± ports. Interference fringes are clearly vis‐
ible. In this example, the temporal delay is set to τ = 0, while the spectral shift is scanned by
altering the mixer voltage. (b) Piezoactuator driving signal (black) and mixer voltage (magenta) across
the scan.

tenuate the signal to ca. n̄ = 0.013 photons per pulse (at the detection stage).

We note that it is more convenient to scan over all frequency shifts (mixer voltage –

an electronic signal change) for each setting of the delay (stage position – a mechanical

change).

4.4.1 EOM and RF setup

The EOM driving signal is obtained from a high-frequency (15GHz) sine generator syn-

chronized with the laser repetition rate (80MHz). The synchronization is achieved using

a phase-locked loop (PLL). A small fraction of the original optical pulses (ca. 30mW of

average power) goes through a double-pass motorized delay and excites a fast photodiode

(PD). The amplified signal from PD (ca. 2V peak-to-peak) enters the clock input of a PLL

generator (Texas Instruments LMX2820). A high stability of the phase lock is necessary

to obtain a repeatable spectral shear. The output signal of the PLL is set to a frequency of
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exactly 184× 80MHz = 14 720MHz≈ 15GHz and has a power of−2.3 dBm. To im-

plement variable attenuation the signal is sent to a mixer (Mini-Circuits ZX05-24MH-S+)

and enters the LO input. A DC voltage on the IF input of the mixer controls the signal

amplitude at the RF port output. Since the IF input must be DC-coupled by design, the

control voltage must applied with care in order to avoid overvoltage which could damage

diodes or transformers of the mixer. The output signal is further amplified (Mini-Circuits

ZX60-06183LN+ and ZVE-3W-183+) and drives the EOM. The mean power of the driv-

ing waveform is 28 dBm. DC voltage control is provided by a Red Pitaya STEMlab 125-14

board with a 14-bit DAC output (±1V range).

Since the optical pulse is chosen to be much shorter than the period of the driving wave-

form, we may approximate the modulation by a linear slope (after appropriate synchroniza-

tion). The frequency shift due to the linear temporal phase is given by

µ = 2π × VppfRF

2Vπ
, (4.13)

with Vpp denoting the peak-to-peak driving voltage, fRF being the fundamental frequency

of the driving waveform and Vπ corresponding to the required voltage for the EOM to pro-

duce a π phase shift. In our system Vπ = 4/π V/rad and fRF ≈ 15 GHz. Hence, we have

µ/Vpp = 6 GHz/V.

4.4.2 Spectral shear calibration

As a part of the setup calibration a the relation between the mixer voltage (variable attenua-

tion of the EOM driving signal) and the amount of frequency shift needs to be established.

The mixer voltage is scanned between±1V while at the same time observing the spec-

trum of a pulse after the EOM. Exemplary spectra and the obtained calibration curve are
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Figure 4.5: (a) Spectra of the pulses undergoing different levels of frequency shifts from
−100GHz to 100GHz. (b) Calibration curve obtained by varying the mixer voltage and observ‐
ing the position of the spectrum centroid.

depicted in Fig. 4.5. The calibration curve is obtained via linear interpolation on the data

points.

We use a custom-built spectrometer based on double-pass second-order diffraction on

a diffraction grating (1200 ln/m, 750 nm blaze). For detection, the spectrometer employs

a line camera (Toshiba TCD1304AP) controlled by an STM32f103c8t6 microcontroller.

Camera images are averaged and a Gaussian fit provides the estimate of the centroid. The

spectrometer was calibrated by observing a narrow line of a continous-wave (CW) external-

cavity diode laser (ECDL) (Toptica DL100) with the spectrometer and a reference instru-

ment – High FInesse WS/6 wavemeter. Calibration data was collected between 794.2 nm

and 795.99 nmwith 360 points. A polynomial fit to the data further serves as the calibra-

tion curve.

By observing the spectrum (its shift and shape distortion) we are able to best align the

optical pulse with the driving waveform. Even at the best points, we observe a minute dis-

tortion due to the temporal tails of the pulse reaching beyond the regime where the driving

waveform can be approximated as a linear slope.
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4.5 Results
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Figure 4.6: (a)‐(d) Spectrograms measured for bright light with a range of pulse bandwidths. (i)‐(l)
Amplitude and phase of the reconstructed envelope of pulse’s electric field in the spectral domain.
(e)‐(f) Calculated spectrograms corresponding to the reconstructed pulses.

Our demonstration of VarSI encompasses bright light and single-photon-level pulses

in the near-infrared 795 nm for pulses with spectral bandwidths between 48GHz and

96GHz. A sharp spectral filter used to prepare the pulses ensures the presence of fine fea-

tures in the spectrograms, providing a good test bench for VarSI. The results for bright

pulses are depicted in Fig. 4.6 while for the single-photon-level light in Fig. 4.7. The spec-

trograms of reconstructed pulses closely match the experimental data. During reconstruc-

tion, we employ linear interpolation for the collected data. The last rows of Fig. 4.6 and

Fig. 4.7 present the phase and amplitude of pulses electric field envelope, in the spectral do-

main. Reconstruction in the temporal domain is depicted in Fig. 4.8. As expected within
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Figure 4.7: (a)‐(d) Spectrograms measured for single‐photon‐level light with a range of pulse band‐
widths. (i)‐(l) Amplitude and phase of the reconstructed envelope of pulse’s electric field in the spec‐
tral domain. (e)‐(f) Calculated spectrograms corresponding to the reconstructed pulses.
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Figure 4.8: Reconstructed pulse’s electric field envelope in temporal domain, for single‐photon‐level
light.

the regions of non-vanishing amplitude, the reconstructed phase is flat.

To quantify the reconstruction quality, we calculate the fidelity between the recon-
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structed and measured spectrograms.

F =
⟨|Sexp||Srecon|⟩√
⟨|Sexp|2⟩⟨|Srecon|2⟩

, (4.14)

with the average ⟨.⟩ calculated over the spectrogram extent. We note that the fidelity here is

not a direct measure of the VarSI performance since no ground truth for the pulse electric

field is known. Instead, it demonstrates the self-consistency of the reconstruction method.

For bright light regime we get Fclass = 94%while at the single-photon level Fsp = 97%.

For practical reasons, the reconstruction algorithm was limited to a maximum of 300 iter-

ations. Certainly, improvements in this area can be very beneficial to the overall quality of

VarSI.

Let us discuss a basic limitation of VarSI. With smaller spectral bandwidths the pulses

get longer in time. One limitation in this regard is the linear approximation region of the

sinusoidal EOM driving waveform, which depends on the RF frequency. Conversely, if the

spectral bandwidth of the pulse is increased, a larger frequency shift is required to map the

whole extent of the spectrogram. This in turn necessitates higher RF driving frequencies

and/or larger RF powers. Otherwise, the retrieved information on the pulse is limited, and

the reconstruction may be deteriorated. Looking at Eq. (4.13), one way to improve the

amplitude of modulation is by lowering Vπ. Modulators with a Vπ of 1.75V [171] and

1.4V [172] have been demonstrated. Development of thin-filmmodulators is particularly

promising in this matter [173].
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4.6 Methods

4.6.1 Derivation of the g(2) function

Following ref. [174, 175] we will show how the g(2) function can be measured in the VarSI

setup. Let us begin with a linearly polarized pulse of light traveling along z axis with the

electric field E(t). With a balanced beamsplitter, the pulse is split into two arms (denoted

1,2) of the interferometer E1,2(t) = E(t)/
√
2. A delay and a frequency shift are introduced

in the 1,2 arms, respectively

E1(t) →
E(t− τ)√

2
, (4.15)

E2(t) →
E(t)eiµteiφ(t)√

2
. (4.16)

The fluctuation of the phase difference between the interferometer arms will be modeled by

a random variable φwith a probability distribution P such that

∫
dφP (φ) cosφ = 0. (4.17)

Note that this is a less restrictive assumption than a uniform distribution. The interferom-

eter arms 1,2 are intersected at a second balanced beamsplitter whose output ports will be

denoted by±. For the fields after the second beamsplitter we can write

E±(t) =
1

2

(
E(t− τ)± E(t)eiµteiφ(t)

)
. (4.18)
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The intensity of the± fields is then measured with bucket detectors integrating over a time

period T

∫ T/2

−T/2

|E±(t)|2 dt =
1

4

[∫ T/2

−T/2

dt
(
|E(t− τ)|2 + |E(t)|2 ± 2Re

(
E(t)E∗(t− τ)eiµteiφ(t)

))]
.

(4.19)

Since T is much larger than the width of the pulse, we can extend the integral to infinity.

Hence, the first two terms of the above equation are equal. The second-order intensity

correlation function is given by

g(2)(τ, µ) =

∫
dφP (φ)

∫ +∞
−∞ dt|E+(t)|2

∫ +∞
−∞ dt′|E−(t′)|2

(
∫
dφP (φ)

∫ +∞
−∞ dt|E+(t)|2)(

∫
dφP (φ)

∫ +∞
−∞ dt |E−(t)|2)

, (4.20)

where we average over the phase distribution. The denominator of this equation can be

evaluated to

∫
dφP (φ)

+∞∫
−∞

dt|E+(t)|2
∫

dφP (φ)

+∞∫
−∞

dt|E−(t)|2
 =

1

4

 +∞∫
−∞

dt|E(t)|2
2

.

(4.21)

We can see that by first observing

∫
dϕP (ϕ)

+∞∫
−∞

dtRe(E(t)E∗(t− τ)eiµteiφ(t)) =

∫
dϕP (ϕ)

+∞∫
−∞

dt|E(t)E∗(t− τ)|

× cos(ϕK(t, τ, µ) + ϕ(t)) = 0, (4.22)
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where ϕK(t, τ, µ) = arg(E(t)E∗(t − τ)eiµt) and we used Eq. (4.17). The numerator of

g(2) reads

1

4

 +∞∫
−∞

dt|E(t)|2
2

−
∫
P (φ)dφ

 +∞∫
−∞

dtRe
(
E(t)E∗(t− τ)eiµteiφ(t)

)2 ,
(4.23)

where we again used Eq. (4.17) and the definition of the short-time Fourier transform of E

gated by E∗, as given by Eq. (4.3). The phase φ is considered constant on timescale ofE(t)

andE∗(t− τ) duration. This way we get the second term in the numerator

∫
P (φ)dφ

 +∞∫
−∞

dRe
(
E(t)E∗(t− τ)eiµteiφ(t)

)2

=

∫
P (φ)dφ

(
Re

(
eiφSE(t)(τ, µ)

))2
=

∫
P (φ)dφ(cos2 φ(Re(SE(t)(τ, µ))

2 + sin2(φ)(Im(SE(t)(τ, µ))
2

− 2 cosφ sinφRe(SE(t)(τ, µ))Im(SE(t)(τ, µ))). (4.24)

Again employing Eq. (4.17) and the property of
∫
dφP (φ) cos2 φ =

∫
dφP (φ) sin2 φ

we have for the g(2) function

g(2)(τ, µ) = 1−
∣∣SE(t)(τ, µ)

∣∣2
(
∫∞
0

|E(t)|2 dt)2

∫
dφP (φ) cos2 φ. (4.25)

We can simplify the phase integral

∫
dφP (φ)

1

2
(1 + cos(2φ)) =

1

2
, (4.26)
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to get the final result

g(2)(τ, µ) = 1− 1

2

∣∣SE(t)(τ, µ)
∣∣2

(
∫ +∞
−∞ |E(t)|2 dt)2

. (4.27)

4.6.2 Derivation of the gradient function and numerical errors

We refer to the notation and detailed description of ref. [170] and here only briefly describe

modifications introduced to the common pulse retrieval algorithm (COPRA). The elec-

tric field of the pulse is discretized. The temporal and spectral domains are related by the

Fourier transform

Ẽn =
∑
n

DnkEk = FTn→k(Ek) (4.28)

Ek =
∑
k

D−1
kn Ẽn, (4.29)

withDnk = ∆t
2π
eiωntk andD−1

kn = ∆ωe−iωntk . Let us denote the shifted pulse byAmk =

FT−1
n→k(e

iτmωnẼn) and define the signal as Smk = AmkE
∗
k .

The algorithm reconstructing the amplitude and phase of the pulse’s electric field pro-

ceeds as follows.

1. begin with an initial guess of the electric fieldE,

2. calculate associated signal Smn,

3. make a projection of the measured intensity and define S ′
mn for the measured spec-

trogram and guess signal (c.f. Eq. (14) in ref. [170]),

4. denote the distanceZm between the discretized signal and its projection,
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5. update the guess of the electric field asE ′
n = En − γm∆nZm and go to step 2.

The step size γ is related to the convergence of the local iteration. In our implementation,

the algorithm is interrupted after 300 iterations.

The main modification for our setup is in the expression of the gradientZm which needs

to be specific to a given form of the spectrogram (here modulus squared of the STFT). The

gradient reads

∆nZm = −2
∑
k

∆S∗
mk

∂Smk

∂Ẽ∗
n

+∆Smk

[
∂Smk

∂Ẽn

]∗
. (4.30)

with the STFT derivative:

∂Smk

∂Ẽn

= D−1
kn e

iτmωnE∗
k +D∗−1

kn Amk. (4.31)

In our case there is no dependence on the field conjugate, hence:

∆nZm = −2
∑
k

∆Smk[D
∗−1
kn e−iτmωnEk +D−1

knA
∗
mk]. (4.32)

Finally, we get the following expression forZm

∆nZm = −4π∆ω

∆t
(FTn→k(∆SmkEk) + FT∗

n→k(∆S
∗
mkAmk)). (4.33)

4.7 Conclusions

In this chapter, we have discussed a new ultrashort pulse characterization method dubbed

Variable Shearing Interferometry. The technique modifies standard electro-optic shearing

interferometry avoiding the need for a spectrally-resolved measurement while maintaining
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its single-photon-level compatibility. This is at the cost of a worse scaling of the measure-

ment time with the number of resolved points in the pulse’s electric field and a need for

ambiguous algorithmic reconstruction of the electric field itself. Nevertheless, bucket de-

tection with relatively slow photodetectors greatly reduces the cost and complexity of the

setup, in particular for spectral regimes where a high-resolution single-photon-sensitive

spectrometer is difficult to construct. Furthermore, being a variant of EOSI, VarSI avoids

the optical noise and low conversion efficiency of non-linear methods such as FROG or

SPIDER. This is important for single-photon-level light, which nevertheless is a niche ap-

plication compared to the broad range of measurement or manufacturing techniques using

ultrashort pulses of light, where standardized FROG, SPIDER, or their variants are a valid

choice.

In VarSI both the delay and the frequency shift in the interferometer arms are scanned

to form a 2-dimensional measurement map. The measured quantity is the second-order

intensity correlation function between the interferometer outputs, which corresponds to

the self-gated short-time Fourier transformmodulus squared (a spectrogram) of the pulse’s

electric field. In the classical regime, this is equivalent to estimating the interference fringes

visibility. Intensity interferometry has its innate advantages such as the robustness to phase

fluctuation between the interferometer arms. VarSI could be also employed with incoher-

ent or partially coherent light.

For the reconstruction of the pulse’s complex electric field, we have modified a standard

algorithm originally developed for non-linear ultrashort pulse characterization methods

(that also require such reconstruction).

In the proof-of-principle experiment we characterized a series of pulses at 795 nmwith

bandwidths between 48GHz an 96GHz and with non-Gaussian profiles. We reconstructed

the complex electric field of the pulses and compared the experimental and reconstructed
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spectrograms achieving high fidelity.

An important extension of VarSI would be the addition of phase sensitivity allowing for

a direct measurement of a complex STFT and mitigating the electric field reconstruction

ambiguities. This could be achieved by incorporating a continuous-wave pilot beam into

the interferometer which would track the interferometric phase between the arms φ(t).

Another direction would be to use the setup to perform a spectral tomography of a single

photon (which would also require a known well-characterized reference photon) [176].

Time-frequency modes are a timely topic [177] and we believe that VarSI in this context

well supplements the arsenal of existing characterization techniques and offers a valid basis

for further extensions.
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5
Ultrafast Fractional Fourier Transform

5.1 Foreword

A natural progression from our experiments with ultrashort pulse characterization was in

the direction of performing controlled operations coherently shaping the spectro-temporal

mode of the pulse. While the ultimate goal and motivation for such operations was an im-

plementation of a super-resolution imaging technique in the time-frequency degree of free-

dom (described in Chapter 6), the midway steps are of interest themselves.
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In this chapter, we describe a single-photon-level-compatible electro-optic ultrafast im-

plementation of the Fractional Fourier Transform (FRT). In the time-frequency (TF) space

(e.g. Chronocyclic Wigner Function) of an ultrashort pulse, FRT corresponds to a rota-

tion described by an angle α. The special case of α = π/2 is just the ordinary Fourier

transform. Within the framework of TF space, the ability to coherently rotate the state is

a fundamental operation. Applications of FRT range from signal processing (e.g. filtering

of time-correlated noise [178]) to serving as a fundamental block of complex TF protocols,

also in the optical single-photon-level domain (as exemplified in Chapter 6).

In the optical domain FRT can be synthesized via spectral dispersion followed by a time-

lens and another spectral dispersion equal in magnitude to the first. Similarly, to a spectral

shift discussed in Chapter 4, the time-lens (which is just a quadratic temporal phase mod-

ulation) may be implemented with an electro-optic modulator (EOM) or via a number of

different non-linear optical interactions (such as wave-mixing, cross-phase modulation, or

parametric processes) [179, 180]. The advantages of using electro-optic modulation are

again mainly in terms of avoiding the optical noise of non-linear methods. EOM-based

time lenses are not a new idea and have been demonstrated already in ref. [181]. Their

main limitation is the magnitude of the phase modulation (i.e. limited focusing power of

the lens). However, the technology of EOMs has undergone significant improvements

since the first demonstration of an EOM-based time lens, and now is the technology of

choice for single-photon-level applications [182, 183]. Another advantage of using an

EOM is the electronic control of the driving waveform amplitude, which in the context

of FRT changes the rotation angle α.

This chapter is based on ref. [184].
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5.2 Introduction

The fundamental role of the TF domain is reflected in extensive optical applications from

the classical communication techqniues (e.g. wavelength-division-multiplexing) to quan-

tum technologies [76, 185–191]. Complete TF frameworks have been proposed for the

latter [78] and it also includes quantum-inspired or quantum-enhanced techniques such as

super-resolution temporal imaging [87, 192], bandwidth shaping [182, 193], multi-mode

quantum repeaters [76], mode sorting [194], spectroscopy [189], continuous-variables

protocols [195, 196], waveform compressors [197] and optical oscilloscopes [198, 199].

The presence of ultrashort pulses-based techniques becomes more prevalent in biology,

medicine, chemistry, and spectroscopy [200, 201], material science [202] or atomic and

molecular physics [203]. In particular, quantum TF protocols often require well-controlled,

low-noise, and coherent TF operations.

Optical FRT constitutes such an operation, corresponding to an arbitrary rotation of

the state in the TF space. In the domain of signal processing the FRT operation is com-

monly employed for the filtration of time-correlated noise [178], and has been proposed

for encryption protocols [204] or chirp-based encoding schemes [205]. Even with purely

classical signals, optical FRT would enable signal processing directly in the optical domain

avoiding often inefficient, noisy, and low-bandwidth conversion to the electronic domain.

Optical FRT has also been proposed as an optical pulse-shaping method to reduce pulse

distortion in optical communication [206], and for secure chaos-based communication

[207]. In the single-photon-level regime, FRT enables for instance the TF implementation

of super-resolution spectroscopy, discussed in chapter 6. This implementation can also be

extended to mode sorting. In fact, a constellation ofN parallel FRTs with their angles sepa-

rated by 2π/N and connected by a passive linear optical network implements mode sorting
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intoN modes [208]. Furthermore, FRT combined with a projective spectrally resolved

measurement provides a cross-section of the TF space and when combined with spectral

interferometry allows the retrieval of the third order spectral phase [209] which remained

ambiguous for instance in our VarSI method (c.f. chapter 4).

FRT has been demonstrated in the optical domain in several implementations. A partic-

ularly simple one employs just a linearly chirped Bragg diffraction grating (LCFBG) which

being a spectral disperser realizes the TF analog of Fresnel diffraction [210]. The drawbacks

include unfeasible wavelength tuning (by replacing LCFBG) and limited resolution and

bandwidth. In the regime of longer pulses (MHz bandwidth) a very promising solution

has been presented in ref. [211]. The authors demonstrate a single-element FRT based on a

feedback loop (which limits the bandwidth). Finally, with a fairly complicated cold-atomic

quantummemory setup a high-quality FRT for sub-GHz pulses has been recently demon-

strated by Niewelt et al. [212].

The FRT was introduced in the optical domain byMendlovic and Ozaktas in 1993

[213] and a year after a general implementation compatible with ultrafast pulses was de-

scribed by Lohmann andMendlovic [214]. It is based on a chain of a dispersive element

(pulse stretcher), quadratic temporal phase modulation (time-lens), and another dispersive

element with an equal magnitude of dispersion to the first.

Here we present and discuss an electronically controlled low-noise implementation of

FRT compatible with single-photon-level picosecond pulses. For the spectral dispersion, we

employ a diffraction grating pulse stretcher, while the temporal quadratic phase modula-

tion is implemented with an EOM.We note that an ordinary Fourier transform (α = π/2)

has been previously demonstrated with diffraction grating-based pulse stretcher and an

EOM-based time-lens [215]. However, it has not been extended (nor the extension dis-

cussed therein) to FRT. Electro-optic FRT promises good scalability if the pulse stretchers
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are replaced with fiber Bragg gratings and the EOMwith linear optical elements is imple-

mented on-chip.

Figure 5.1: The Chronocyclic Wigner Function (CWF) of an optical state consisting of two coherent
pulses separated in time. The CWF is presented before, after, and at intermediate stages of an op‐
tical FRT. The final operation corresponds to the rotation of the CWF.Φ2,Φ

′
2 – quadratic spectral

phase (ideallyΦ
′
2 = Φ2). K – quadratic temporal phase.

5.3 Fractional Fourier Transform

FRT naturally extends the Fourier transform which is fundamental in the fields of optics

and signal processing [216–219]. Since the definition of FRT in the form of an integral

transform (c.f. ref. [217]) does not provide much physical insight, instead of repeating it

here, we will consider a more physics-oriented description. FRT can be defined as a prop-

agator of the quantum harmonic oscillator, under the action of which the state’s quasi-

probability distribution rotates in its TF phase space. FRT can be characterized by a degree

P corresponding to a rotation by an angle α = Pπ/2 [217]. Hence, P = 1 gives the or-

dinary Fourier transform. Let us define the Chronocyclic Wigner Function (CWF) defined

for a pulse mode amplitude f(t) as [220]

Wf (ω, t) =

+∞∫
−∞

dt′ f

(
t+

t′

2

)
f ∗

(
t− t′

2

)
eiωt

′
. (5.1)

The rotation can be synthesized by alternating spectral and temporal quadratic phase
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modulations. The are two possible orders: temporal-spectral-temporal or spectral-temporal-

spectral [217]. We will focus on the latter since it is more experimentally feasible. Consider-

ing the light’s electric field these operations can be written as the spectral phase modulation

φω(ω) = Φ2(ω − ωc)
2/2, (5.2)

temporal phase modulation

φt(t) = Kt2/2, (5.3)

and another spectral (Φ′
2, ω

′
c) which ideally has the same parameters as the first. In this

description ωc, ω
′
c are central frequencies of the transformation (e.g. in a grating pulse

stretcher the frequency for which the optical path through the stretcher is the shortest),

we have aligned the time t so that the pulse is centered at t = 0,Φ2 described the group de-

lay dispersion (GDD) andK the time-lens chirp rate. The evolution of an exemplary CWF

through the modulation stages has been depicted in Fig. 5.1. We have chosen a CWF of a

pair of coherent pulses separated in time since such a state will be later used in the experi-

ment. Notably, the series of quadratic modulations is analogous to the spatial domain. In

the paraxial approximation a single transverse dimension propagating through free space,

passing through a lens, and again propagating through space, will be described by the same

transformation [17, 221, 222].

Following ref. [217] with our notation we have the following expression for the the FRT

angle

Φ2 = G tan
α

2
, (5.4a)

K = G−1 sinα, (5.4b)
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with G denoting a scale factor for the GDD.We can solve for α to get

α = ±2 arcsin

√
Φ2K

2
, (5.5)

where the+ (−) sign is for 0 ≤ α < π (−π < α ≤ 0). We note that the Eqs. (5.4a) and

(5.4b) are valid only whenK andΦ2 have equal signs. Experimentally, positive (negative)

dispersion requires a positive (negative) time lens.

Employing the slowly varying envelope (SVE) approximation [223] we can write the

electric field of the pulse as

E(t) = A(t) exp(iω0t) =
exp(iω0t)√

2π

∫
dω̃ Ã(ω̃) exp{(iω̃t)}, (5.6)

with ω̃ = ω − ω0 and ω0 denoting the central frequency. Let us further work with the SVE

A(t) alone while having Eq. (5.6) in mind.

The quadratic spectral phase modulation amounts to

Ã(ω̃) → Ã(ω̃)× exp [iφω(ω)] . (5.7)

We note that potential misalignment ωc−ω0 ̸= 0 of the stretcher central frequency with re-

spect to the pulse central frequency will manifest just as an additional linear spectral phase

which in the time domain corresponds to a delay. Such a misalignment will be intrinsically

corrected during the synchronization of the EOM radio-frequency (RF) driving waveform

with the optical pulse.

Φ2

2
(ω − ωc)

2 =
Φ2

2

[
ω̃2 − 2ω(ωc − ω0)

]
+ const. (5.8)
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Hence, the SVE after the pulses passes through the stretcher is given by

A1(t) =
1√
2π

∫
dω̃ Ã(ω̃) exp

{(
i
Φ2

2
ω̃2

)}
exp{(iω̃t)}. (5.9)

The EOM adds a temporal phase given by Eq. (5.3)

A2(t) = A1(t)× exp{[iφt(t)]}. (5.10)

After the EOM the pulses will be interrogated with a spectrometer. Neglecting limited

resolution, the measured quantity is

Iout(ω) =|Ã2(ω̃)|2, (5.11a)

Ã2(ω̃) =
1√
2π

∫
dtA1(t) exp{[iφt(t)]} exp{(−iω̃t)}. (5.11b)

Here we omitted the second pulse stretcher (c.f. Fig. 5.1) since ideally, it would only in-

troduce a quadratic spectral phase which is not measurable with a spectrometer (spectral

intensity measurement). In the regime of 10 ps pulses, phase-sensitive spectral characteriza-

tion (or high-resolution temporal characterization) which would show the effect of the last

stretcher is not easily accessible.

Let us note that our theoretical description is only valid up to the quadratic terms in the

temporal and spectral phase. We shall further discuss the range of pulse bandwidths for

which quadratic modulation is a good approximation (see sec. 5.5.7). Beyond this approxi-

mation, a general formalism is given in terms of integral transforms e.g. in ref. [224] or for a

similar problem of time-frequency imaging in ref. [225].
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5.3.1 Two pulses

From the perspective of experimental characterization, a special case of FRT applied to two

coherent pulses separated in time is particularly informative. Such a state is an analog of the

cat state encountered in quantum optics and will serve us as a good probe of the FRT setup

parameters. The pulses are described by

A(t) =
1√
2

[
a(t− δt

2
) + eiφa(t+

δt

2
)

]
, (5.12)

with a(t) denoting the SVE of a single pulse, φ being the phase between pulses and δt de-

scribing their separation in time. The spectrum of such a state shows equidistant (∝ 1/δt)

fringes

|Ã(ω̃)|2 = |ã(ω̃)|2 [1 + cos (ω̃δt+ φ)] . (5.13)

FRT rotates the state in the TF space. As the rotation angle α is increased toward π/2 the

fringes are removed and the (initially identical) spectra of individual pulses are shifted into

opposite directions.

For analytical traceability, we will assume Gaussian pulses described by the width σ in

the frequency domain

a(t) =

(
σ2

π

)1/4

exp

{(
−1

2
t2σ2

)}
. (5.14)

Using Eq. (5.11b), the following expression for spectral intensity is obtained

1√
πξσ2

×exp

{(
− ω̃2

ξσ2
− δt2K2

4ξσ2

)}
×
{
cosh

(
δtω̃K

ξσ2

)
+ cos

[
δtω̃

ξ
(1−KΦ2) + φ

]}
,

(5.15)
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with

ξ =
K2

σ4
+ (KΦ2 − 1) 2. (5.16)

As a sanity check let us substituteK = 0 (ξ = 1). The initial spectrum (Eq. (5.13)) is

correctly preserved. If we instead demand α = π/2, the action of an ordinary Fourier

transform (t → Gω) is recovered. Let us use Eq. (5.4b)) and Eq. (5.4a). In such a case

K = G−1,Φ2 = G, ξ = 1/(σ4G2) and the spectrum after the transformation is given by

Gσ√
π
exp

{(
−σ

2δt2

4

)}
exp

{(
−σ2ω̃2G2

)}
×
[
cosh

(
δtω̃Gσ2

)
+ cos(φ)

]
. (5.17)

After algebraic transformations, it can be shown to be a sum of two Gaussians separated in

angular frequency by δt/G. Since the cosine term lost any dependence on ω, there are no

interference fringes in the spectrum.

5.4 Experiment

The experimental setup is depicted in Fig. 5.2. Ca. 100 fs pulses are emitted from a Ti:Sapphire

laser (SpectraPhysics MaiTai) with a 80MHz repetition rate, at a central wavelength of

800 nm, and with an average power of ca. 3W.

A custom pulse shaper (4f filter) carves ca. 74GHz full width at half maximum (FWHM)

pulses which are then coupled to a polarization-maintaining (PM) fiber. The pulse shaper

consists of a diffraction grating (Newport 33067FL01-290R, 1800 ln
mm

, 26.7° blaze angle)

which maps the spectral degree of freedom (DoF) onto the angular (transverse wavevector)

DoF in the horizontal plane. The grating is far-field imaged onto a rectangular slit with an

adjustable width. A retro-reflecting mirror is placed in the near field of the slit, hence fold-

ing the far-field imaging setup to form a unit magnification telescope. By a slight deviation
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Figure 5.2: Schematic depiction of the experimental setup. The experiment begins with ca. 100 fs
pulses produced by a Ti:Sapphire laser. The pulses are filtered to ca. 74GHz via a diffraction grat‐
ing followed by a folded telescope with a rectangular slit and a mirror in the Fourier plane (4f filter).
A Mach‐Zehnder‐type interferometer with a controlled delay in one of the arms (Pulse splitter) splits
the input pulse and produces a state of two coherent pulses separated in time. To implement the
FRT a quadratic spectral phase modulation is imposed with a diffraction grating quadruple‐pass
stretcher. An electro‐optic modulator (EOM) facilitates the quadratic temporal phase modulation.
The radio frequency (RF) signal driving the EOM is obtained by exciting a fast photodiode with a
small power fraction of the original femtosecond pulses (ca. 1mW of average power, 80MHz
repetition rate). A series of amplifiers and filters, including a variable attenuator (VA), shapes the
signal before it enters the EOM. The optical and RF pulses are aligned with delay lines so that the
optical pulse is centered around the extremum of the RF waveform. The transformed signal is mea‐
sured with either a single‐photon‐sensitive or a standard spectrometer. H(Q)WP – true‐zero‐order
half‐ (quarter‐) waveplate, PBS – polarizing beamsplitter, LN – low noise amplifier, S – standard am‐
plifier, VS – vertical‐shift retroreflector, BPF – band‐pass filter, VA – variable attenuator.

of the mirror angle, the returning beam is vertically offset at the grating. This way it can be

separated with a D-shaped mirror and exit the shaper.

The pulses are sent to a Mach-Zehnder-type interferometer partially implemented in free

space and partially in fiber. The pulse power is equally split into the two arms of the inter-

ferometer. One arm contains an adjustable, motorized delay implemented by moving one

of the collimators along the beam propagation. Each output of the interferometer contains

two pulses separated in time. Each pulse is in the same spectro-temporal mode (up to the

delay) as the input. One of the interferometer outputs is routed to the main FRT setup via

fiber.
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Figure 5.3: Experimental and simulated spectra for a pair of coherent pulses separated in time by
δt, undergoing FRT. The GDD is fixed atΦ2 = 15.5 ps2 while the chirp rateK is varied to pro‐
duce different FRT angles α. Each column corresponds to a distinct delay δt. (a)‐(c) Experimental
spectra in the bright‐light regime. (d)‐(f) Simulated spectra corresponding to the bright‐light data.
Parameters for the simulation (described in sec. 5.5.1) were fm = 15GHz,∆t = 11.6 ps,
Φ2 = 15.5 ps2. Fidelities between (a) and (d), (b) and (e), (c) and (f) were 96.28%, 96.27%, and
95.88%, respectively (c.f. sec. 5.5.2). (g)‐(i) Single‐photon‐level spectra with the average photon
number per frame n̄ = 0.38 amounting to 2.4 × 10−4 photons per pulse. A measurement for
eachK setting consisted of 50 × 103 frames. Note that the phase between the pulses φ differs
between the single‐photon‐level and the bright‐light measurements.

The implemented FRT setup consists of a pulse stretcher and a fiber-based EOMmodu-

lator. The pulse stretcher is implemented in a single-grating quadruple-pass Martinez con-

figuration (c.f. ref. [226]) described in more detail in sec. 5.5.4. For the details on the EOM

and RF driving signal formation see sec. 5.5.6. The output of the FRT is observed with a

spectrometer (c.f. sec. 5.5.8). Excluding the detection stage, our setup efficiency is ca. 1%.
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For a full FRT transformation, the EOM should be in principle followed by another

stretcher. Ultimately, the stretcher would only impose a quadratic spectral phase onto the

state output from the EOM. Such a spectral phase cannot be measured with a spectrome-

ter. Hence, since the second stretcher would further reduce already small setup efficiency,

it is omitted for the main measurements. Nevertheless, we have implemented a second

stretcher and experimentally verified that no observable difference was present in a small

sample of measurement settings. See also sec. 5.5.3)

The experimental and simulated spectra for the regime of bright light have been depicted

in Fig. 5.3 (a)-(c) and (d)-(f), respectively. The spectra were measured for different delays

δt between the pulses and a range of FRT angles α controlled by the chirp rateK . Corre-

sponding measurements at the single-photon level are presented in Fig. 5.3 (g)-(i).

Notably, the experimental results show a very good agreement with the simulated model.

Imperfections, as indicated by non-ideal fidelity, mostly originate from artificial low-contrast

fringes present in all measurements with the standard (bright-light) spectrometer. Their

origin is most likely a polarization-degree interference within the spectrometer setup. Such

fringes are visibly absent from the single-photon-level measurements which utilize a differ-

ent spectrometer.

While the GDDΦ2 = 15.5 ps2 of our stretcher is relatively low and could be still ex-

tended several times without significant modifications in the setup, the attainable range of

FRT angles α already reaches beyond the angle α = π/2 of the ordinary Fourier transform.

Finally, let us note that our state of two pulses, due to their relatively large separation in

time, extends in time beyond the regime of quadratic temporal phase modulation, consid-

ered in sec. 5.3.1 (see also sec. 5.5.7). The theory outlined therein, still correctly predicts the

qualitative behavior, nevertheless to capture all features of the experimental data higher-

order terms in the temporal phase have to be accounted for. In fact, for the simulated maps
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we numerically incorporate a full sinusoidal modulation. Theoretically, such an extended

model is well described in ref. [224].

5.5 Methods

5.5.1 Simulation

To simulate the spectra we assume Gaussian, Fourier-limited pulses with the temporal

FWHM of the pulse intensity∆t = 11.6 ps, and a flat temporal phase. The pulses have

their centroid at t = 0 and are symmetrically moved to create the temporal separation δt.

SVE of the pulses is calculated on a temporal grid. Care is taken to ensure that the initial

grid (in time) for the numerical representation of the pulse amplitude is chosen with suf-

ficient padding and granularity. Any artifacts can be quite easily detected by observing the

intermediate steps of the simulation or verifying that the final result remains unaltered as

the grid parameters are changed slightly.

The action of the stretcher is modeled as a purely quadratic spectral phase centered

around the pulse central frequency.

The temporal phase of the EOM is modeled as a cosine with a frequency of fm =

15GHz and an amplitude chosen as a function ofK so that under the series expansions

of the cosine around 0, the quadratic termmatches Eq. 5.3. Additionally, the temporal

phase modulation is slightly shifted in time to model imperfect synchronization between

the RF waveform and the optical signal.

Between the subsequent transformations due to the stretcher and the EOM, the pulses

undergo (an inverse) a Fast Fourier transform to match the domain of the next phase mod-

ulation.

Parameters of the simulation for comparison with the experimental data were mostly
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fixed and taken as independently measured (Φ2, range ofK , fm) with the exception of the

relative phase between the pulses φ, pulse’s FWHM∆t and the time offset between the

temporal phase modulation center and the pulses’ centroid.

5.5.2 Fidelity

The fidelityF quantifies the level of similarity between the simulated I(th)(f,K) and

experimental spectra I(exp)(f,K). It is given by

F =

∑
f,K

√
I(exp)(f,K)I(th)(f,K)√∑

f,K I(exp)(f,K)
√∑

f,K I(exp)(f,K)
, (5.18)

with the summations taken over discrete points of the maps in the coordinates of the chirp

rateK and the frequency f .

5.5.3 Second stretcher

In a complete FRT setup, after the EOM a second stretcher would be placed. It acts to cor-

rect the spectral phase so that a true rotation in the TF space is implemented (c.f. Fig. 5.1).

With temporal intensity or spectral phase-sensitive characterization, the omission of the

last stretcher would change the measurement outcome. However, with a spectral intensity

measurement (a spectrometer), it does not alter the result beyond reducing the overall ef-

ficiency of the setup. We have also verified experimentally this theoretical prediction for a

subset of measurement settings. To avoid the detrimental effect of further reduced setup

efficiency, we omit the last stretcher in the final measurements. Finally, let us note that the

simultaneous phase-sensitive characterization in the spectral and temporal domain is tech-

nically challenging in the 100GHz pulses regime, especially with a sufficient resolution to

interrogate the FRT operation.
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5.5.4 Grating stretcher design

Figure 5.4: Photographs of (left) pulse stretcher and (right) quadruple‐pass delay line.

The pulse stretcher design is similar to the one presented in ref. [227]. A single diffrac-

tion grating (Newport 33067FL01-290R, 1800 ln
mm

, 26.7° blaze angle) is used. A transla-

tion stage with a 10 cm×10 cm platform has its movement aligned with the input and out-

put beams of the setup. On the platform, a complex of the diffraction grating, D-shaped

input, and output routing mirrors, and a vertical-shift retro-reflecting prism is placed. The

layout is illustrated in Fig. 5.2. Adjusting the input D-shape mirror and the grating angle

the central frequency of the stretcher (i.e. the frequency of the shortest optical path) ωc,

and the amount of GDD per distance L. The movement of the stage changes Lwhile keep-

ing the beams aligned and coupled to the output fiber (with large changes in L a slight cor-

rection of the collimator angle alone is required). A photograph of the stretcher is depicted

in Fig. 5.4.

The first order of diffraction (horizontal plane) travels a distanceL ≈ 71.5mm (given

for ωc) before entering a folded telescope with a unit magnification. At the Fourier plane

(far-field imaging lens with a focal length f = 200mm) of the telescope, a retro-reflective

mirror is placed. The lens in the telescope is vertically shifted so that the returning beam
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is spatially separated from the input beam when reaching the grating. With the vertical-

shift retro-reflector, the beam travels another round through the folded telescope and exits

through a D-shaped mirror. This is facilitated by a careful choice of the vertical positions

for each pass.

The GDD of such a stretcher reads [228]

Φ2 =
m2λ3L

2πc2d2 cos2 θd
, (5.19)

withm = 1 denoting the order of diffraction, c the speed of light, d the period of the

grating grooves, and finally θd being the diffraction angle for the central frequency ωc.

Let us note that GDD is independent of f . Nevertheless, with a quadruple-pass design,

the beams pass through the lens far from the optical axis. Their separation at the lens is ap-

proximately the same as at the grating and must allow for the coupling of the input and

output beams through D-shaped mirrors. At the same time, the beams must be kept spa-

tially large for a sufficient Rayleigh range (the total optical path through the stretcher is ca.

2m). Hence, the lens must be carefully chosen to avoid spherical aberration, which is par-

ticularly prevalent with short focal lengths. In an ideal scenario, an aspheric lens would be

used.

Let us further note that in the regime of L ≫ f the setup becomes very sensitive to the

telescope calibration. With a simple ray optics calculation it can be shown that the axial

displacement of the retro-reflective mirror from the Fourier plane δx needs to satisfy δx ≪

f 2/L.

Fortunately, with relatively spectrally narrow≈ 100GHz pulses, the chromatic aber-

rations are not very significant. Nevertheless, if shorter pulses are to be used, achromatic

lenses should be considered. Furthermore, the grating’s horizontal dimension and the cho-
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sen diffraction angle must be compared with the horizontal spread of the returning beam.

Let us observe that the dispersion of the grating stretcher is fundamentally geometric

[226]. With only a single transverse dimension acting as a proxy for the frequency DoF,

the beam necessarily develops astigmatism while it passes through the stretcher. It is true

even if the input beam is free of spatial-spectral correlations. If the GDD of the stretcher is

chosen in the regime of≫ 100 ps2 the output beam needs to be corrected for astigmatism

to ensure reasonable fiber coupling efficiency. It can be achieved with a telescope acting in

a single transverse dimension i.e. built with cylindrical lenses. A configuration that we have

tested, yet not used in the final design due to a small GDD required in the experiment.

We have implemented two instances of the pulse stretcher. Their efficiencies were 8%

(the one used in the final measurement) and 13%. It is consistent with the grating diffrac-

tion efficiency of ca. 70% ((70%)4 = 24%) and output fiber coupling losses.

5.5.5 Strecher GDD calibration

To calibrate how the GDD of the stretcher changes with the position of its translation

stage we used a variant of the spectrally resolved interferometry – the stationary phase point

(SPP) method [229]. A spectrally-wide (ca. 500GHz FWHM) input pulse is split into two

parts of equal power. The first is routed through the stretcher, while the second undergoes

a delay δt (relative to the travel time through the stretcher for central frequency ωc). The

two paths are interfered on a balanced beamsplitter. One of the interferometer outputs is

observed with a spectrometer. The quadratic spectral phase imprinted by the stretcher is

given by Eq. (5.2), and the delay amounts to a linear spectral phase δtω. Hence, the fringe

pattern corresponding to the spectral phase difference between the arms is given by

∝
(
1 + cos

{
Φ2

2
[ω − (ωc +

δt

Φ2

)]2
})

, (5.20)
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Figure 5.5: GDD measurement for the implemented pulse stretcher. The stationary phase point
method is used. (a)‐(e) Data collected for a single position of the stretcher translation stage
(100mm) and a delay of (a),(c) δt = 0ps or (b),(d) δt = 17 ps. (a),(b) Normalized interference
spectra. Each row corresponds to a single sample (gathered at a rate of ca. 100Hz). The interfer‐
ence phase is freely fluctuating. The zero point of the frequency offset is chosen arbitrarily. (c),(d)
Normalized variance over repetitions of the interference spectra (which first undergo background
subtraction and low‐pass Fourier‐domain filtering). The normalized variance shows maxima at the
point of stationary phase point. (e) Centroids of Gaussians fitted to the normalized variance (esti‐
mated points of stationary phase) for varying delays. The GDD is estimated from the slope of the
data after fitting a linear function. (f) The measurement is repeated for several positions of the pulse
stretcher translation stage. Calculated error bars are below the size of the data points and typically
correspond to a 1%‐2% deviation.

where we assumed perfect visibility, omitted a constant (in ω) phase, and converted the

quadratic (in ω) polynomial to the canonical form. The SPP corresponds to a spectral

point where the frequency of the interference fringes is locally 0 i.e.

ωSPP = ωc + δt/Φ2. (5.21)
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If we can measure ωSPP(δt) for a range of delays δt, the inverse of GDDΦ−1
2 can be esti-

mated as the slope coefficient of a linear fit to the data.

To estimate ωSPP(δt) for a given, known delay δtwe let the ω-independent (but time-

dependent) phase between the interferometer arms fluctuate and collect hundreds of spec-

tra over a time of several seconds. The rough location of SPP is already very clearly visi-

ble in the raw maps of spectra versus time, as demonstrated in Fig. 5.5 (a),(b). To obtain a

more precise estimate of SPP the maps undergo a 1-dimensional low-pass filtering along

the frequency offset dimension (i.e. the maps are convolved with a Gaussian kernel row by

row). The filter cutoff (kernel size) is adjusted empirically. We then calculate the variance

over time of the filtered spectra. Notably, a low-pass filter will have the highest response

where the frequency content is the lowest. Since SPP corresponds to the vanishing fringe

frequency, the maximum of the variance well estimates the SPP.

We repeat the process for a series of delays, as depicted in Fig. 5.5 (e) and estimate the

GDDwith a linear fit. Finally, the measurement is done for different positions of the

stretcher translation stage (which up to an offset corresponds to L), as depicted in Fig. 5.5

(f). This way, we can later set the GDD to a desired value by changing the stage position

without the need to use the SPP method after every alteration.

The precision of GDD calculation, taken as the standard deviation of the fit slope, is

on the order of 1%-2%. However, slight alterations in the filtering procedure (e.g. kernel

size) produce already higher variations in GDD estimates. Based on such observations our

estimate for the GDD error is around 5-10%. Notably, lower GDDs are more difficult to

measure. With a limited bandwidth of the pulse, we can only observe interference fringes

over ca. 500GHz and a low GDDmeans that the quadratic phase will change slowly in this

bandwidth resulting in few observed fringes. Extensions of the SPP using a 2-dimensional

spectro-spatial measurement can provide better GDD estimates in this regime [230].
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5.5.6 RF line and EOmodulation
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Figure 5.6: Characterization of the RF waveform driving the EOM. (a) Spectrum of an optical pulse
passing in series through the pulse stretcher and the EOM with the RF attenuation set to 5dB.
Data for a series of RF signal delays tRF is presented. (b) FWHM and centroid position of a Gaus‐
sian fit to the spectrum, as a function of the RF delay tRF. (c)‐(e) Temporal phase imprinted by the
EOM φEOM, estimated by integrating the positions of the centroid over time. (c) Estimate of φEOM

for a single RF attenuation of 5dB. (d) (solid) Estimate of φEOM for a single RF waveform delay of
tRF = 60 ps. (d) (dashed) Estimate of the chirp rateK as a function of the attenuation, obtained
by fitting a quadratic function to a small region around a φEOM maximum for each attenuation
level.

To drive the EOM (iXblue NIR-MPX800-LN-20) we excite a fast photodiode (PD)

(Hamamatsu Photonics G4176-03 with a bias tee Mini-circuits ZX85-12G-S+ providing

a bias voltage of 10V) with an unfiltered ca. 100 fs pulse. The average optical power is set

to avoid saturation, by observing the RF waveform (after preamplification) on an oscillo-

scope. The signal from the PD is preamplified (low noise Mini-circuits ZX60-06183LN+

followed byMini-circuits ZX60-183-S+), undergoes bandpass filtering (6− 18GHz, Mini-

circuits ZBSS-12G-S+) and passes through a programmable attenuator (6-bit, 0.5 dB LSB,
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Analog Devices ADRF5720) to enter a power amplifier (3W, Mini-circuits ZVE-3W-

183+). The sequence of elements is depicted in Fig. 5.2.

To synchronize the optical pulse with the RF waveform extremumwe use a motorized

optical delay line for the pulse driving the PD. Additionally, we control the delay of the

optical signal with a manual quadruple-pass delay line placed just at the output of the Pulse

Splitter (the delay line is not explicitly shown in the figure).

To characterize and calibrate the EOM phase modulation we use an optical probe pulse.

The pulse is sent through the stretcher and the EOM to be finally measured with a spec-

trometer. Notably, the frequency shift of the pulse centroid∆f0 is directly proportional to

the slope of the EOM phase over the pulse extent

∂tφEOM(t) = 2π∆f0. (5.22)

By integrating this equation, we can estimate φROM(t) from a measurement of∆f0 as

a function of the RF waveform delay tRF. The EOM calibration has been depicted in

Fig. 5.6.

Once φROM(t) is obtained, the chirp rate of the time lensK can be retrieved by fitting a

quadratic function in a small region around the waveform extremum.

Assuming the pulse is much shorter than the RF waveform period, we also theoretically

predict the chirp rate in terms of the physical parameters of the EOM

K = 2π3Vpp
Vπ

f 2
m, (5.23)

with Vπ [V] denoting the required voltage for π phase shift, Vpp being the peak-to-peak

RF amplitude, and where we have assumed a sinusoidal modulation at frequency fm and
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expanded the waveform around an extremum up to the quadratic terms. In the experiment

we have Vπ = 4V, Vpp ≈ 19.5V, and fm ≈ 15GHz. The attainable maximal Vpp ≈

34.6V is limited by the amplifier power of ca. 3W, and further power dissipation in the

EOM.

Repeatable and precise control of the RF waveform amplitude plays a crucial role in im-

plementing arbitrary-angle FRT. In particular, avoiding a significant RF waveform phase

shift with the changing amplitude poses a technical challenge. For our experiment, we

have carefully chosen a programmable attenuator. It already has a relatively low nominal

phase shift of ca. 20° at 15GHz between 0 dB and the maximum of 31.5 dB of attenua-

tion (scaling linearly in between). We operate at a reduced range of attenuations and em-

pirically find a fragment of the RF driving waveform, where other imperfections mostly

cancel the remaining phase shift. This is best illustrated in Fig. 5.6 (e) at tRF = 60 ps. The

argmaxφEOM stays almost constant as the attenuation is changed. We reprogram the at-

tenuator with a parallel digital interface directly from a Bluepill STM32F103C8T6 board

(ARM processor). The attenuator has a 6-bit range and a least-significant-bit (LSB) step of

0.5 dB.

5.5.7 Pulse preparation and FRT bandwidth

Let us consider the range of the spectral widths of the optical pulses entering the FRT

setup, for which the FRT operation contains at most a preset level of distortions. We will

refer to this range as the optical bandwidth of the electro-optic FRT.

The most important bandwidth-limiting factor is the modulation frequency fm of

the EOM, which corresponds to a temporal aperture of the time lens. In our experiment

fm ≈ 15GHz. Since the EOM only modulates the phase and not the amplitude, a natural

definition for the temporal aperture is not immediately obvious. We choose to compare an

137



101 102

GDD Φ2 [ps2]

101

102

103

B
an

dw
id

th
∆

f
[G

H
z]

0

π/4

π/2

3π/4

π

FR
T

an
gl

e
α

[r
ad

]

∆(−)
f ∆(+)

f

Figure 5.7: (left axis) The shaded region represents the range of initial optical pulse bandwidths
compatible with the FRT implemented with a given GDDΦ2 and assuming a temporal aperture
at the EOM ofDt = 24.3 ps. (right axis) Corresponding FRT angle α assuming a chirp rate of
K = 6.80× 10−2 ps−2.

ideal quadratic phase modulation with an equivalent cosine modulation, both centered at

t = 0. The argument t for which the cosine modulation deviates by 5% from the quadratic

approximation is taken as half of the temporal aperture. In our caseDt = 0.34 × f−1
m ≈

24.3 ps. Note that the limitation to the optical pulse duration due to the temporal aperture

should be considered after the pulse passes through the stretcher and is elongated due to

Φ2.

We will assume Fourier-limited Gaussian pulses with the intensity in time having∆t

FWHM. After the stretcher, this width will be transformed to [228]

∆post
t = ∆t

√
1 +

(
4 log(2)

Φ2

∆2
t

)2

. (5.24)

The constraint due to the temporal aperture reads∆post
f ≤ Dt. With the property of

Fourier-limited pulses∆t∆ω = 4 log 2, we can write the bounds on the optical bandwidth
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of initial pulses, in terms of the spectral intensity FWHM∆f = ∆ω/(2π)

∆
(−)
f ≤ ∆f ≤ ∆

(+)
f , (5.25a)

∆
(±)
f =

Dt

2π
√
2Φ2

√√√√
1±

√
1−

(
8Φ2 log 2

D2
t

)2

. (5.25b)

Let us consider the limit of∆(−)
f with smallΦ2:

lim
Φ2→0

∆
(−)
f =

2 log 2

πDt

. (5.26)

It just expresses that the initial pulse, even without the stretcher, must fit within the tempo-

ral aperture. In this regime the FRT bandwidth is asymptotically

∆
(+)
f −∆

(−)
f ∼ 1

2π

Dt

Φ2

. (5.27)

On the other hand, with largeΦ2 obeying ξ := 1− (8Φ2 log 2/D2
t )

2 −→ 0we have

∆
(+)
f −∆

(−)
f −→ 2

√
2 log(2)

π
×

√
ξ

d
. (5.28)

Figure 5.7 depicts the FRT bandwidth∆f alongside corresponding FRT angles α, as a

function ofΦ2. A chirp rate ofK = 6.80× 10−2 ps−2 is assumed. With our experimental

value ofΦ2 = 15.5 ps2, we get 18.2GHz ≤ ∆f ≤ 248.9GHz.

Decreasing the GDDΦ2 increases the FRT bandwidth; however, for a fixed angle α

would require a higher chirp rateK which with a given modulation frequency fm would

need higher RF power or a smaller Vπ of the EOM.

Under the current capabilities of our experimental setup,Φ2 could be increased several
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times (even just by increasing L). Such an alteration would narrow the FRT bandwidth∆f

yet increase the maximal FRT angle α. For the experiment we selected∆f ≈ 74GHz.

Finally, let us note that a similar analysis of the optical bandwidth limits can be found in

Refs. [231, 232].

5.5.8 Spectrometers

Figure 5.8: Photograph of the single‐photon spectrometer.

We use two different spectrometers, albeit with a similar design, to measure the spectral

intensity in the bright-light and in the single-photon-level regimes.

The bright-light spectrometer is the same device as used in our previous experiment and

has been described in sec. 4.4.2 and in ref. [233].

The single-photon-level spectrometer employs a double pass through a diffraction grat-

ing (second-order diffraction, 1200 ln /mm). For the detection, we use our custom single-

photon camera (c.f. chapter 1). The spectrometer input is fiber-based. A collimator pro-

duces a beam with ca. 10mm diameter. The incidence angle onto the grating (in the hori-

zontal plane) θi is ca. 67° and the diffraction angle θd is very close to 90°. The second pass is

implemented with a retro-reflecting prism introducing a vertical shift of ca. 10mm and

routing them = 2 diffracted order back onto the grating. After the second pass the
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diffracted beam returns alongside the input beam but at a different height and is picked

by a D-shaped mirror. A lens (focal length f = 400mm) far-field images the grating onto

the camera. A photograph of the spectrometer is depicted in Fig. 5.8.

With the camera, we gather 50 × 400 pixel frames at 2× 104 frames per second. The

image intensifier gating time is 20 µs. Each camera pixel corresponds to 1.67GHz in fre-

quency. This scaling has been calibrated with an interferometric measurement of the fringe

density for a pair of coherent pulses with a known temporal separation.

The resolution of the spectrometer is limited by the diffraction grating and theoretically

given by [234]:

δf = 2× c

W | sin θi + sin θd|
≤ c

W
, (5.29)

with θi, θd considered positive on the same side of a normal to the grating surface,W ≈

19.2mm denoting the diameter of the beam area on the grating surface (including elonga-

tion effects), c being the speed of light, and the 2 factor stemming from the double pass. In

our setup δf ≈ 8GHz.

The double-pass second-order diffraction configuration provides a high resolution, albeit

at a cost of low efficiency which in our case is≈ 4× 10−5.

5.6 Conclusion

In this chapter, we have described an ultrafast electro-optic implementation of a coherent

time-frequency transformation – the Fractional Fourier Transform. Quadratic electro-

optic phase modulation implements the time lens – a crucial component of an optical

FRT, avoiding inherent noise present in implementations based on non-linear optical in-

teractions, hence facilitating single-photon-level operation.

A careful design of the RF line shaping the EOM-driving signal ensures an all-electronic,
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precise control of the FRT angle α and avoids detrimental phase shifts of the RF signal

when changing α. Notably, the presented FRT implementation promises good scalability,

being based on optical devices with on-chip or fiber-based equivalents available.

In our proof-of-principle experiment, we have demonstrated the FRT operation on an

exemplary state of two coherent pulses (single-photon level or bright) separated in time.

After the FRT, the spectrum of this probe states provides a characterization of the transfor-

mation itself. An excellent agreement with a semi-independent model is observed.

The merits of the electro-optic FRTmake it a good candidate for a building block of

complex time-frequency domain quantum optical protocols. Possible applications include

mode-sorting, super-resolution imaging (c.f. chapter 6), engineering of unitary transfor-

mations, quantum time-frequency processors [183, 235], or mode-division multiplexing

protocols [236].
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6
Super-resolution of ultrafast pulses via

spectral inversion

6.1 Foreword

In this chapter, we present a spectral-domain super-resolution method for ultrafast pulses,

which we call Super-resolution of Ultrafast pulses via Spectral Inversion (SUSI). The ex-

periment builds on the apparatus and expertise from Chapters 4 and 5 and concludes this
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thesis. In particular, the ability to implement a Fractional Fourier Transform (c.f. Chapter

4) proves indispensable to the SUSI setup.

In a wider context, SUSI is a simple 2-mode implementation of a spectral mode sorter.

As further outlined, it could be in principle expanded to multiple modes, and implemented

with on-chip and fiber components only. These features combined with the single-photon-

level compatibility (due to electro-optic time lenses, c.f. Chapter 4) make it a prominent

platform for spectro-temporal quantum information processing. Frameworks that employ

the time-frequency domain in this context have been recently proposed [78] and offer many

advantages over spatial multiplexing such as compatibility with existing single-mode fiber

architecture.

This chapter is based on ref. [237]

6.2 Introduction

We shall consider the fundamental concept of resolution in measurement. While very in-

tuitive and omnipresent, it is not straightforward to rigorously describe. In 1879 Lord

Rayleigh formulated a practical limit, known as the Rayleigh limit, to the resolution in

optical imaging [238]. The spectral domain has its analog of the Rayleigh limit, called

the Fourier limit. Both descriptions are essentially similar and formulate the resolution

in terms of a minimal image-plane separation between incoherent equally bright emitters.

Since such formulations depend on the imaging system’s point spread function (PSF), they

are not very general or precise. Nevertheless, the Rayleigh or Fourier limits provide useful

order-of-magnitude estimates.

A quantitative and more rigorous treatment of resolution was brought by the asymp-

totic parameter estimation theory [239]. On its grounds, the problem is formulated as a
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task of estimating a separation (our parameter) between two emitters. In the simplest sce-

nario, the emitters are incoherent, equally bright, and emit much less than 1 photon per

coherence time. Compared to the formulations based on the PSF, the estimation theory

brings a notion of resources. In this case, the resource may correspond to the number of

collected photons or the allocated measurement time. This way, the resolution limit is no

longer a sharp border between what can and cannot be resolved but rather expresses a re-

source cost associated with the required measurement precision. Well below the Rayleigh

or Fourier limit, the resource cost becomes infeasible and in this sense the two formulations

are equivalent. Notably, there are still limitations to such a treatment. Ultimately its results

are accurate only in the asymptotic limit of many repetitions of an identical experiment. By

no means, does it exhaust the experimental scenarios which may for instance include adap-

tive measurements. Some of these limitations are addressed in the framework of Bayesian

estimation [154].

A clever combination of the estimation-theoretic treatment and a set of methods from

quantum optics (without actually dealing with non-classical states) recently brought a

groundbreaking realization of how the Rayleigh or Fourier limits may be beaten by care-

fully designing the measurement. Tsang et al. observed that the essential information con-

tained in the phase of the complex-valued electromagnetic fieldE(f) is lost during imaging

with quadratic-response photodetectors (direct imaging – DI) which measure the intensity

∝ |E(f)|2. However, the information can be efficiently extracted by a scenario-dependent

change of measurement basis i.e. mode sorting before the intensity measurement [240].

This seminal quantum-inspired treatment has met with a great interest in the field and

stimulated enormous efforts reflected in numerous theoretical extensions and experimental

demonstrations [65, 241–260].

Super-resolution refers to the ability to surpass the classical Rayleigh or Fourier limits of
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direct imaging. Most demonstrations are concerned with the problem of far-field imaging

e.g. estimation of the angular separation between distant celestial objects. However, in the

spectral domain, the experimental demonstrations are surprisingly scarce. Even if via the

space-time analogy [222] the problem of spectral resolution is analogous to 1-dimensional

imaging [261]. Notable implementations include an application of a quantum pulse gate

as the mode demultiplexer [87, 262], heterodyne detection and mode-sorting in post-

processing [263], and a quantum-memory-based protocol employing time-axis-reversal

interferometry [30, 264]. The latter uses a very similar principle to the method we will de-

scribe. Nevertheless, these conceptually similar protocols, are very different in their imple-

mentation and target disparate spectral-bandwidth regimes (here on the order of 100GHz,

their on the order of tens of kHz).

Let us note that the term super-resolution often refers to a broader class of methods en-

compassing e.g. laser spectroscopy [265] and in the regime of quantum technologies to

various methods employing engineered states of non-classical light for probing [52, 266,

267]. We shall focus on a scenario where the illumination cannot be controlled, and the

light is incoherent and dim (on average below 1 photon per coherence time). It is for in-

stance the case in fluorescence spectroscopy or stellar observations [268]. The former is

predominantly a tool of organic chemistry, medicine, and biology [269].

SUSI is inspired by the image inversion interferometry – a method demonstrated to im-

prove the resolution in spatial imaging [243, 244, 246, 270]. The spectral inversion in SUSI

refers to the analog of image inversion in the real space. The input state of light is equally

split into two arms of a Mach-Zehnder-type interferometer. In one of the arms the spectral

mode of the state is inverted with respect to an a priori known centroid. This way, the out-

put ports (labeled±) of the interferometer contain the symmetric (+) and antisymmetric

(−) parts of the spectral mode, respectively. The output states undergo photon counting.
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Let us consider an incoherent mixture of two pulses that are of slightly different frequency

(have a small separation between their spectra, relative to the spectrum width) and other-

wise identical. Notably, if the setup is free of imperfections, and the separation is set to 0,

the input state has only a symmetric component and the (−) output port remains dark. As

soon as the separation is increased from 0 (i.e. one of the pulses shifts to lower frequencies

while the other to the higher) each pulse contributes a small fraction of power to the anti-

symmetric mode. This way, the number of photons detected in the (−) port can be used

to estimate the separation with high precision. Since we started from a completely dark (−)

port, such a measurement has no background noise and provides a very efficient estima-

tor. Of course in a realistic scenario, the interference visibility will be limited. Some of the

main limiting factors are that the spectral mode of each pulse should be ideally symmetric

to begin with and the interferometer has to remain stable throughout the measurement.

We can also imagine that instead of counting the photons in the± ports, the output

modes are further processed, each in another SUSI interferometer. Such a setup would re-

quire many stable interferometers connected with linear optics, and as such would be most

practical if implemented on-chip. We note that a very similar proposal has been recently de-

scribed and analyzed in ref. [271]. There are also alternative approaches to ultrafast spectral

mode sorting, based on a cascade of intertwined temporal phase modulations and spectral

diffraction [272].

6.3 Theory

The spectroscopic equivalent of direct imaging would involve collecting a statistic ofN

photons with a spectrally-resolving detector. The observed photon counts would be binned

according to their frequency and with an assumed statistical model an estimator would be
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constructed (e.g. a maximum likelihood estimator) for the measured parameter (here the

spectral separation between the pulses). Naturally, ifN is increased (in most cases the mea-

surement or averaging time) the estimator variance will be lower. Hence, there is no sharp

border between the regime of parameters below and above the resolution. Even when the

spectral features of width σ will be separated by δf obeying ε = δf/σ ≪ 1, direct imag-

ing remains an unfeasible but possible approach. We shall now quantify how the problem

can be formulated in terms of the used resources (number of observed photonsN ) for a

maximal acceptable variance∆2ε̂ of an estimator ε̂.

In this context, the paradigm of frequentist inference brings a very convenient tool in the

form of the Cramér–Rao bound and Fisher Information [154]. The former bounds the

variance of any unbiased estimator

∆2ε̂ ≥ 1

F (ε)
, (6.1)

with F (ε) denoting the Fisher information for ε corresponding to a measurement scheme

described by possible outcomes {i} and probabilities of these outcomes {P (i|ε)} condi-

tioned on the true value of ε. The Fisher information is given by

F (ε) =
∑
i

(∂εP (i|ε))2

P (i|ε)
. (6.2)

Under our assumptions of a low number of photons per coherence time (well discussed

in ref. [240]), the probabilities {P (i|ε)}will follow a Poisson distribution with means

µi(ε) = Np(i|ε), where p(i|ε) corresponds to a probability of a given measurement out-

come for a single photon. With Poisson-distributed probabilities, the estimator variance

exhibits shot-noise scaling∆2ε̂ ∝ 1/N or F ∝ N which can be readily seen by substi-
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tuting the distribution into Eq. (6.2). Henceforth, we will consider Fisher information per

photonF = F/N which is equivalent to substituting P (i|ε) → p(i|ε) in Eq. (6.2).

Let us limit our discussion to a pair of fully incoherent pulses with equal energy and an

a priori known spectral centroid. Extensions beyond this simple scenario have been exten-

sively studied in the spatial domain [273–277]. We note that in a practical scenario where

the centroid is unknown a part of the allocated resources will be first used to estimate the

centroid. Adaptive strategies are possible [278]. For clarity, we shall employ dimensionless

quantities – the frequency ξ = f/σ and pulse separation ε = δf/σ. We will denote by

A(ξ) the slowly varying envelope of a single pulse’s electric field in the spectral domain. It

is assumed to be symmetricA(ξ) = A(−ξ) and normalized

∫
dξ |A(ξ)|2ξ2 =

∫
dξ |A(ξ)|2 = 1. (6.3)

Conveniently, with a fully incoherent mixture of two±ε/2 pulsesA(ξ ± ε/2), we can

calculate the result of our experiment for each pulse separately. Ultimately, photon counts

for±ε/2 cases will be added together.

6.3.1 Spectral versus spatial domains

Let us briefly note the main difference between our problem in the spectral domain and its

analog in 1-dimensional spatial imaging. Here the pulse spectral width is the scale param-

eter of the problem and at the same time an intrinsic property of the uncontrolled illumi-

nation. At the same time, we do not impose any restrictions on the resolving power of the

instruments, even when considering the case of spectral direct imaging. This is in contrast

to the far-field spatial imaging. There, the instrument’s PSF determines the scale parame-

ter and in the simplest case, the objects are point-like. This difference becomes substantial
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when we compare SUSI with DI. If the spectral shape of the pulse contains rapidly chang-

ing components i.e. the pulse has a broad temporal shape, the DI will seemingly offer ex-

cellent performance. This is of course an artifact of our simplified analysis of the problem,

since in any real scenario a spectrometer will have a PSF with a finite width. The temporal

domain provides another view on this issue. If the pulse has a rapidly changing spectrum

it must be temporally broad. The PSF of the spectrometer is equivalent to some temporal

aperture (for instance corresponding to the exposure time of the detector). Notably, for

SUSI a temporal aperture can also be identified and is associated with limitations of electro-

optic modulation (c.f. sec. 5.5.7).

6.3.2 Spectral inversion interferometry

+

SPD

Estimator
Input state

50/50 BS

Figure 6.1: Schematic depiction of SUSI. Two incoherent pulses, with their spectra separated by ε
and an a priori known centroid, are sent to a Mach‐Zehnder‐type interferometer. One of the inter‐
ferometer arms contains a Fourier transformF wile the other an inverse Fourier transformF−1.
Their combined action will be equivalent to a spectral inversion in one of the arms only. The final
beamsplitter of the interferometer separates the symmetric (+) and the antisymmetric (−) part of
the input state spectral mode. The output ports undergo photon counting resulting in a better sen‐
sitivity in the estimation of ε than direct imaging (spectroscopy). 50/50 BS ‐ balanced beam splitter,
SPD ‐ single photon detector.

The idea of SUSI has been depicted in Fig. 6.1. The main part of the setup consists of

a Mach-Zehnder-type interferometer. In one arm of the interferometer, we place a device

that performs a Fourier transformF and in the other arm similarly an inverse Fourier

transformF−1. Note that all elements are optically linear and the total energy of the
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pulses does not change under the action of (inverse) Fourier transform (Parseval’s theo-

rem). Hence, the setup is equivalent to an interferometer with one arm empty and a se-

ries of two Fourier transforms in the other arm. Such a composition performs the spectral

equivalent of image inversionF ◦ F [g(x)] = g(−x). With the operation split into two

arms, the efficiency and the higher-order imperfections in both arms are similar.

We will now calculate the photon counts in a SUSI setup for a single pulseA(ξ − ε/2)

assuming the regime of ε≪ 1. Let us series expand the pulse envelope in ε

A(ξ − ε

2
) = A(ξ)− ε

2
∂ξA(ξ) +

ε2

8
∂2ξA(ξ) +O

(
ξ3
)
. (6.4)

Clearly, the information on ε is carried by antisymmetric part ∂ξA(ξ). Omitting higher-

order terms and performing the (inverse) Fourier transform (ξ −→ τ ) we can write

F
[
A(ξ − ε

2
)
]
= Ã(τ)

[
1 + iτ

ε

2
− ε2τ 2

8

]
, (6.5)

F−1
[
A(ξ − ε

2
)
]
= Ã(τ)

[
1− iτ

ε

2
− ε2τ 2

8

]
, (6.6)

with Ã = F [A]. We shall include the limited interference visibility 0 ≤ V < 1 and look

at the spectral intensity I± in the output (±) ports

I± =
1

4

(∣∣∣F [
A(ξ − ε

2
)
]∣∣∣2 + ∣∣∣F−1

[
A(ξ − ε

2
)
]∣∣∣2)

± V
2
Re

{
F

[
A(ξ − ε

2
)
]
F−1

[
A(ξ − ε

2
)
]∗}

. (6.7)

Using Eqs. (6.5) and (6.6) we have

I±(τ) =
∣∣∣Ã(τ)

∣∣∣2 [1± V
2

∓ V
4
τ 2ε2

]
+O

(
ε3
)
. (6.8)
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Wewill assume bucket single-photon detectors i.e. no resolution in frequency or time (at

least not on the timescale of the pulses). This way, we may integrate over τ . Using the Par-

seval’s theorem,A(ξ) normalization and omitting higher-order ε terms we get

n± =

∫
dτ I±(τ) =

1± V
2

∓ V
4
ε2∆, (6.9)

∆ =

∫
dτ

∣∣∣Ã(τ)
∣∣∣2τ 2, (6.10)

where the variance∆ is determined by the shape of a single pulse’s spectrum. For reference,

Gaussian pulses give∆Gauss = 1/4 in the dimensionless units.

We can now add together the photon count n± for the±ε/2 pulses. Employing Eq. (6.2)

with P (i|ε) → p(i|ε) and taking

p(±|ε) = n±/(n+ + n−), (6.11)

the Fisher information per photonF(ε) = F (ε)/N is given by

F(ε) =
V2

1− V2

ε2∆2(
1− ε2∆

2

)2 =
V2∆2

1− V2
ε2 +O

(
ε3
)
. (6.12)

6.3.3 Super-resolution parameter

The Quantum Fisher Information (QFI) upper-bounds the Fisher Information over the set

of all measurement schemes. In a perfect scenario of perfect visibility V = 1 and an equally

bright, incoherent pair of pulses, the QFI remains constant regardless of ε [240]. Neverthe-

less, any imperfection deteriorates the QFI to a∝ ε2 scaling [279, 280]. Since a quadratic

scaling is expected, the comparison of the scaling factors constitutes a meaningful way to

compare super-resolution protocols. We follow ref. [264] and define the super-resolution
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parameter as

s = lim
ε→0

FSUSI(ε)

FDI(ε)
. (6.13)

The super-resolution factor of s can be understood as a reduction by s (compared to DI) in

the number of required resources for a given precision. For instance, let use analyze the case

of Gaussian pulses. We haveF (Gauss)
SUSI = ε2/16 × V2/(1 − V2) andF (Gauss)

DI = ε2/8, so

s(Gauss) = 1/2×V2/(1−V2). In the case of Gaussian pulses, SUSI would require visibility

of more than ca. 81.7%. to outperformDI.

We shall also note that as ε approaches 0 (limit of ε → 0), a large part (fraction of (1 +

V)/2) of Fisher informationFSUSI corresponds to the dark port (−) measurement alone.

E.g. with our experimental V = 93%, this fraction is 96.5%.

6.4 Experiment

6.4.1 Setup

Figure 6.2 depicts the experimental setup for SUSI. The main part is a Mach-Zehnder-type

interferometer with electro-optic (inverse) Fourier transformers in its arms. Each (inverse)

Fourier transformer comprises a pulse stretcher with the group delay dispersion (GDD)Φ2,

an electro-optic time lens with a chirp rate ofK = 1/Φ2, and the second pulse stretcher

with a GDD ofΦ2. Direct Fourier transform requiresK > 0, while the inverseK < 0.

The frequency with the shortest optical path in the pulse stretcher determines the central

(0) frequency of the transform. The transformers are just the Fractional Fourier Transform

setups, described in detail in chapter 5, set to α = 90◦ and extended to include the final

pulse stretcher.

Since the interferometer comprises a spatially large setup with meters of fiber and free

space lines, it has to be actively stabilized. This is achieved with an intermittent continuous-
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wave (CW) laser reference bean. For details see sec. 6.4.5.

Our input state is prepared with a custom pulse shaper. It consists of diffraction grat-

ing followed by a folded telescope with unit magnification. In the Fourier plane of the

telescope, a slit with regulated width and lateral position is placed. The retro-reflecting

mirror which folds the telescope is placed in the near-field of the slit. As in other experi-

ments, we start with 100 fs pulses from a Ti:Sapphire laser (SpectraPhysics MaiTai). The

spectral width after filtering is 85GHz full width at half maximum. The motorized lateral

movement of the slit shifts the central frequency and effectively alters ε. Details are given in

sec. 6.4.5.

6.4.2 Results

Figure 6.3 depicts the experimental results. First, we place a spectrometer at the output of

the SUSI interferometer and observe how shifting the central frequency of a single input

pulse changes the spectrum. The results are depicted in Fig. 6.3 (a). Then the spectrometer

is replaced with a pair of single-photon bucket detectors at the± output ports of the inter-

ferometer. Photon counts undergo time-tagging and temporal histograms are constructed,

as depicted in Fig. 6.3 (b). For clarity of presentation, the regime of large ε is compared

with ε = 0. During the main SUSI measurement, similar histograms h±(t, ε) are collected

and further integrated over the measurement period n±(ε) =
∫
dt h±(t, ε). Such results

are accumulated and added together over the course of many experiment repetitions. Fi-

nally, we estimate the conditional probability of observing a photo count in the dark port

p(−|ε) as the fraction photon counts in this port. We then fit a parabolic model, given by

Eqs. (6.9) and (6.11) to p(−|ε). This allows us to calculate the corresponding Fisher infor-

mation using Eq. (6.12). Experimental p(−|ε) together with a parabolic fit and the result

of SUSI simulation is depicted in Fig. 6.4.2 (c). Ultimately, the Fisher information per pho-
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Figure 6.2: (a)‐(j) SUSI setup and the experimental sequence. (a) High‐level schematic depicting the
Mach‐Zehnder‐type actively phase‐stabilized interferometer with electro‐optic (inverse) Fourier
transformations in the arms. (b) Photon‐counting detection followed by the time‐to‐digital con‐
verter (time‐tagger), histogramming module, and digital‐domain signal processing implemented in
an FPGA (RedPitaya). During the phase‐stabilization period, photon counts are processed via the
FPGA‐based feedback loop. (c) Experimental cycle controlled from the FPGA‐based sequencer.
(d) Free space delay line with a quadruple pass. (e) Schematic of the (inverse) Fourier transformer
F (F−1). (f) Part of the setup splitting the signal pulses and injecting the CW reference beam.
(g) Splitting of the initial 100 fs pulses. A small power fraction drives the time lenses and the rest
is filtered to produce the signal pulses. (h) Schematic of the electro‐topic time lens. The RF setup
is slightly improved since the experiment of Chapter 5. (i) Schematic of the pulse stretcher. (j) CW
reference beam switching facilitated with a double‐pass acousto‐optical modulator (AOM). (k) RF
driving signal and the optical pulse have to be properly synchronized to produce a quadratic phase
modulation for the time lens with the desired sign of the chirp rateK . HWP (QWP) – half‐(quarter‐
)waveplate, (N)PBS – (non) polarizing beamsplitter, piezo – piezoelectric actuator, amp – amplifier,
EOM – electro‐optical modulator, BPF – bandpass filter, pol ctrl – fiber polarization controller, SPD
– single‐photon detector, PID – proportional‐integral controller, HST – histogramming module, TDC
– time‐digital converter, MMV – monostable multivibrator, LPF – low‐pass filter, ND – neutral‐
density filter.
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Figure 6.3: (a) Spectra collected at the output of the SUSI interferometer for a single input pulse
with the frequency shifted by 0 or±42GHz from the central frequency of the Fourier transform‐
ers. The interferometer phase is freely fluctuating. The presented spectra correspond to construc‐
tive (max) and destructive (min) interference. (b) Normalized histograms of single‐photon counts
observed at the± SUSI interferometer outputs. The measurement period (0 ≤ t ≤ 200 µs) and
a part of the phase‐stabilization period (t > 200 µs) has been depicted. Subsequent rows corre‐
spond to different shifts ε/2 of the input pulse. (c) Fraction of the photo counts present in the (−)
port p(−|ε) among all counts observed during the measurement period. Depicted data (Exp) corre‐
sponds to an incoherent mix of pulses separated in frequency by ε. The experimental result closely
matches a parabolic fit (Fit) and a simulation (Sim) described in sec. 6.4.3. (d) Fisher information for
ε estimation, per an observed photonF . A model fitted to experimental data (Fit) is compared with
the analytical model (Theor) and SUSI simulation (Sim) and bench‐marked against the DI simulation
detailed in sec. 6.4.4.

tonF(ε) corresponding to either the parabolic fit, SUSI simulation, or DI simulation is de-

picted in Fig. 6.4.2 (d). For both simulations, an experimentally measured spectral intensity

of the pulse (and a flat spectral phase) is assumed. Additionally, for the SUSI simulation,

we take an independently measured interferometric visibility of 93%. The analytical model

is based on the variance∆ ≈ 0.293 calculated from the numerical Fourier transform of the

experimental spectrum of the pulse.

Comparing the the parabolic fit to the data with the simulation of perfect DI we get a

super-resolution parameter of s = 2.13. A summary of results and used parameters is

presented in Tab. 6.1.

A good agreement between the experimental results and both the analytical model and
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simulation is observed. Via a measurement model fitted to the experimental data, we are

able to demonstrate a super-resolution behavior with respect to the DI. It is quantified in

terms of a higher Fisher information per photon regardless of the separation ε. While, our

comparison is limited to the regime of small separations ε ≪ 1, outside of this regime DI

performs very well and is a standard method of choice. Higher Fisher information can be

interpreted via the Cramér-Rao bound as a proportional reduction in the required number

of observed photons for a given estimation precision.

6.4.3 SUSI simulation

The SUSI setup has been simulated with the experimental imperfections accounted for in

a single parameter – interferometric visibility V = 93%. The input state was taken as a

fully incoherent mixture of two identical pulses. Each pulse starts with a flat spectral phase

and the spectral intensity as measured experimentally. Central frequencies of the pulses are

chosen so that their separation is ε. Here we outline the simulation procedure:

1. We first collect an average experimental spectrum of a single pulse. The background

of the spectrum is removed by fitting a mixture of linear and Gaussian functions and

subtracting the best fit of the former.

Table 6.1: Results and parameters. Visibility of V = 93% is assumed. DI – direct spectral imaging,
Theor – analytical prediction, Sim – simulated result, Fit – fit to experimental data, Gauss – the case
of Gaussian pulses.

∆ ∂2
εF(0)/2 s

DI

0.293

0.24 1
Theor 0.55 2.29
Sim 0.48 2.01
Fit 0.51 2.13

DI Gauss
1/4

1/8 1
Theor Gauss 0.40 1.60
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2. The spectral envelope of the pulse is taken as the square root of such spectrum. If

the values are negative (which happens rarely and far from the center of the pulse),

they are replaced with zeros. The envelope is interpolated to a chosen numerical grid.

3. We shift the envelope by ε/2.

4. Such obtained signal is padded with zeros. We calculate both the fast Fourier trans-

form (FFT) of the signal and its inverse (iFFT).

5. A beamsplitter transformation is calculated between the FFT part (a) and the iFFT

part (b). Limited visibility is accounted for.

c̃±(ε) =
1

2

[
V|a± b|2 + (1− V)

(
|a|2 + |b|2

)]
. (6.14)

6. We repeat the process for an opposite sign of ε/2 and average the results.

c±(ε) =
1

2
(c̃±(ε) + c̃±(−ε)), (6.15)

7. Finally, the dark port fraction is calculated.

psim(−|ε) = c−(ε)

c+(ε) + c−(ε)
. (6.16)

From the dark port fraction, we can calculate the Fisher information by fitting a parabolic

model (exactly like with the experimental data).
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6.4.4 Direct imaging

If Gaussian spectrum of the pulses is assumed, the Fisher information for DI can be cal-

culated analyticallyFDI = ε2/8. Nevertheless, our experimental spectrum cannot be

well-enough approximated with a Gaussian since very small changes in the spectrum shape

vastly affectFDI. It is a consequence of perfect DI (unlimited resolution) assumed for our

discussion. Hence, to make the comparison with SUSI fair, we will use the experimentally

measured spectrum and calculate the Fisher information for DI numerically. Here we out-

line the procedure:

• We prepare the spectrum in the same way as described in sec. 6.4.3.

• We add together two copies of the spectrum (not the spectral envelope) shifted by

±ε/2, respectively.

• Such obtained signal is normalized to have a unit integral. We denote the result as

ρ(f |ε).

In each frequency bin (spectrometer pixel), whose center is denoted as f , the photo counts

are distributed according to a Poisson distribution with a mean ofNρ(f |ε). HereN is the

total number of photons and we have
∫
df ρ(f |ε) = 1. Hence, the Fisher information

reads

FDI =

∫
df RDI(f), (6.17)

with the Fisher information density being

RDI(f) =
(∂ερ(f |ε))2

ρ(f |ε)
. (6.18)
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This expression is evaluated numerically and integrated toFDI. Figure 6.4 depicts the

Fisher information density for DI. A parabolic fit givesFDI = 0.24× ε2.

0.0

0.2

150 100 50 0 50 100 150
Frequency f [GHz]

0

1

2

DI
(f)

×
10

4 = 0.0 = 0.1 = 0.2

0.0 0.5 1.0 1.5
DI(f) × 104

Figure 6.4: Numerical calculation of the Fisher information density in the frequency domain for the
estimation of ε with DI. See main text for details.

6.4.5 Setup details and calibration

Pulse preparation

Figure 6.5: Photographs of (left) the 4f spectral filter and (right) the electro‐optic time lens.

Similarly to previous experiments, the pulse preparation begins with 100 fs of 798 nm

central wavelength at a 80MHz repetition rate from a Ti:Sapphire laser (Spectra-Physics
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Mai Tai) with an average power of ca. 4W. The pulses are spectrally filtered with a 4f fil-

ter depicted in Fig. 6.2 (g). It comprises a diffraction grating (1800 lines/mm) which is

far-field imaged onto a rectangular slit with adjustable width and lateral position. The man-

ually controlled width adjusts the bandwidth of the pulses (for the main experiment set

to 85GHz), while the motorized (stepper motor) lateral position changes the central fre-

quency of the pulses. A retro-reflecting mirror is placed in the near-field of the slit. The re-

flected beam returns at a slightly different height which facilitates its outcoupling through a

D-shaped mirror. The output pulses are fiber coupled to a polarization-maintaining single-

mode fiber and travel to the SUSI interferometer. A photograph of the 4f filter is depicted

in Fig. 6.5.

Interferometer stabilization

Figure 6.6: Photograph of the double‐pass AOM setup which switches on the CW reference beam
during the stabilization period.

The experimental cycle, depicted in Fig. 6.2 (c), consists of a measurement period (200 µs)

and the interferometer stabilization period (10ms). During the latter, the optical signal

driving the time lenses (K drv) is switched off with a (single-pass) acousto-optical modu-

lator (AOM). Additionally, the programmable attenuator which is a part of each electro-

161



optic time lens is set to the maximal attenuation. The CW laser probe is switched on via a

(double-pass) AOM setup, a photograph of which is depicted in Fig. 6.6

Figure 6.2 (a), (f), and (j) depicts how the CW reference beam and the signal light are

spatially overlapped and enter the interferometer together. The CW external cavity diode

laser (Toptica DL pro 780) is tuned to match the central frequency of the pulse stretchers

and signal pulses (for ε = 0). To combine the reference and signal beams we employ a non-

polarizing balanced beamsplitter (NPBS). The reference beam has a circular polarization

while the signal has a diagonal polarization. This way, there is a 90° phase delay between the

electric field of the signal and the reference and the beamsplitter outputs. Only one of the

output ports is used, hence approximately half of the power is lost. Let us set the interfero-

metric phase such that the reference beam exits with equal power through the (±) output

ports of the SUSI setup. Due to the 90° phase delay between the signal and reference, in

such a setting, the signal will only exit through one of the ports (+) while leaving the other

dark (−). This way, during the stabilization period we can treat the difference between the

number of photons in the± ports as an unambiguous and sensitive error signal. It would

not be possible without additional intensity modulation of the reference beam if we kept

the reference and signal in phase.

The reference beam is highly attenuated so that we can still use the same superconduct-

ing single-photon detectors (ID Quantique) as for signal light. The average number of pho-

tons during the stabilization phase is around 5× 106 counts per second in each port.

Figure 6.2 (b) depicts the processing of the photon counts. Raw signal from the de-

tectors is discriminated and timestamped by a time-to-digital converter (ID Quantique

ID900) which also implements a triggered generator (monostable multivibrator). For each

photon count the generator outputs a normalized single pulse of 50 nswidth. The pulses

are sent to analog-digital converters of an FPGA board (RedPitaya + our custom system).
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The FPGA implements lows-pass filtering, subtraction of the signals, and a proportional-

integral controller (PID) in the digital domain. The pulses from both ports are filtered and

their difference is used as the PID error signal. The output of the PID is fed to an on-board

digital-analog converter and further to an external amplifier which drives a piezo-electric

actuator placed within one of SUSI interferometer arms [c.f. Fig. 6.2 (f)].

Small experimental imperfections such as unequal efficiency of the interferometer arms,

deviations from the 90° phase delay between the signal and reference, and imbalanced split-

ting of the NPBS can be corrected by fine-tuning the PID set-point.

For the measurement period, we stop the PID and hold the last value of its output. If the

integral part of the PID overflows, it is reset to 0 instead of saturating. This is required since

the interferometric phase is a periodic quantity.

Due to fast switching between the measurement and stabilization periods (limited by

AOMs, on the order of at most a few µs) we can employ short measurement windows

(200 µs) avoiding phase drift during measurement. Since the interferometer is large and

employs meters of fiber and free space lines, the unstabilized phase fluctuates rapidly and

such a short window is required.

To control the experimental cycle we use a sequencer implemented within the FPGA

with the ability to program the sequence from the PC.

Fourier transformer calibration

As detailed in Chapter 5, to configure the electro-optic Fractional Fourier transform setup

as an ordinary Fourier transform (α = 90◦) the two pulse stretchers of the setup should

have the same GDDΦ2. Furthermore, to implement the inverse Fourier transform the

same absolute value of the GDDwith the opposite sign is required for the second pair of

stretchers. To cross-calibrate the 4 stretchers we put each positive-dispersion one in se-

163



ries with a negative-dispersion one. Such a pair is then placed in a single arm of a Mach-

Zehnder-type interferometer. The second arm consists of a regulated delay. We input a test

pulse with ca. 500GHz bandwidth (maximal for the our pulse shaper) into the interfer-

ometer. Its output is observed with a spectrometer. Observing the interference fringes, we

set the delay to cancel the linear component of the spectral phase difference between the

arms. The remaining fringes correspond to the difference between the quadratic phases

of the two opposite-sign stretchers. This way we adjust the GDD of one of the stretchers

(moving its platform with the grating, c.f. sec. 5.5.4). When the GDDs of both stretchers

cancel each other, the fringes disappear. During the measurement, a piezo-actuator within

the interferometer is slowly driven with a sine waveform so that we observe consistent fluc-

tuations in the fringes.

The second requirement to achieve a Fourier transform concerns the chirp rate of the

time lensK = 1/Φ2. We perform a calibration measurement equivalent to the main exper-

iment of Chapter 5. Two coherent temporally separated pulses are sent via the calibrated

Fourier transform setup and observed with a spectrometer. We adjust the chirp rateK to

observe a spectral separation between the pulses matching our theoretical prediction for the

case ofK = 1/Φ2, where the value ofΦ2 is independently measured with the stationary

phase point method (c.f. sec. 5.5.5).

Single-photon histograms

The temporal photon count histograms are collected within the TDCmodule. Histogram-

ming is triggered by the FPGA sequencer. In each experimental cycle around 3.5ms his-

togram with 1 µswide bins is gathered. The cycle is repeated at ca. 100Hz. PC controls

the collection and storage of the histograms, settings of the sequencer, and position of the

stepper motor (ε). The stepper motor is driven with an ARM controller (stm32f103c8t6)
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Figure 6.7: Photographs of (left) the FPGA (RedPitaya) board and (right) the stepper motor driver
board with an ARM microcontroller.

and an integrated motor driver.

Photographs of the FPGA board and the stepper motor driver are depicted in Fig. 6.7.

6.5 Mode sorting

SUSI being a method based on the spatial-domain image inversion interferometry, funda-

mentally performs demultiplexing of the symmetric and antisymmetric part of the spectral

mode of the input state. In the regime of small separations, ε ≪ 1 the spectral mode of

the state can be decomposed into two orthogonal modes which correspond to these parts

[240]. Hence, in this regime, SUSI implements a simple mode sorting of two modes. A

further extension to more modes is possible and has been theoretically proposed [271].

In this case the setup consists of a network of SUSI interferometers connected with linear

optics. Spectral mode sorting is particularly important for the rapidly developing field of

time-frequency quantum information processing [78].

Another approach to spectral mode sorting has been proposed by Shah et al. [192]. The

authors use a cascade of electro-optic phase modulations intertwined with spectral dis-

persers. While their method does not require a stabilized interferometer, the phase modu-
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lation needs to be arbitrary (and not only parabolic) and is optimized on a scenario-specific

basis. Hence, it would require much higher bandwidths of the phase modulation, making

the solution unfeasible for tens-of-GHz bandwidth light. Furthermore, with the increasing

number of sorted modes the setup grows in the number of elements in series leading to a

rapid decrease in overall efficiency. In contrast, the depth of a network of SUSI interferom-

eters would grow logarithmically.

6.6 Conclusion

In this final chapter, we have presented a frequency-domain super-resolution method that

builds on the spatial-domain ideas of image inversion interferometry. SUSI is aimed at ul-

trafast pulses in the bandwidth regime of tens of GHz. We have studied a paradigmatic case

of two incoherent closely separated spectral features under the conditions of dim (≪ 1

photon per coherence time) and uncontrolled illumination. Compared with ideal direct

spectral imaging, we demonstrated a two-fold reduction in the required number of pho-

tons (or the measurement time) for a given precision of estimating the separation between

the features. SUSI is an optically-linear method applicable to single-photon-level light, in a

wide range of wavelengths. Compatibility of the employed components with the on-chip

integration and possible extensions to a network of SUSI interferometers promise further

applications in spectroscopy and mode sorting.
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7
Conclusion

In this thesis, we have discussed a series of experiments in quantum optics with spectrally

broadband light. Most of the studies employed a custom fast single-photon camera pre-

sented in chapter 1 and benefited from its high frame acquisition rates. In chapter 2 we

have presented a measurement of hybrid 4-dimensional correlations between the spectral

and transverse degrees of freedom for a pair of photons (a twin photon state). Chapter 3

outlines a dispersive spectroscopy method based on two-photon interference with spec-

trally resolved photon counting. From chapter 4 we turned more towards characterization

167



and transformation of single-photon-level ultrafast pulses (on the order of 10 ps). First, we

presented an extension of the electro-optic shearing interferometry, based on the measure-

ment of the second-order intensity correlation and not requiring a spectrometer. In chap-

ter 5 we discussed an electro-optic implementation of the Fractional Fourier transform, a

practical and fundamentally interesting time-frequency domain coherent transformation

which generalizes the ordinary Fourier Transform. Finally, in chapter 6 we extended the

setup to implement a frequency-domain super-resolution technique able to estimate the

separation between two incoherent spectral features with a 2-fold improvement over the

direct spectroscopic imaging.

The time-frequency domain of nonclassical and single-photon level light holds a vast

potential for technological applications and fundamental studies. The variety of discussed

quantum optical experiments – from studies of hybrid entanglement and quantum-enhanced

spectroscopy to super-resolution methods – speaks to the versatility and universality of

broadband light. Furthermore, considering the compatibility of spectrally multimode

states with current fiber architectures and on-chip integrated photonic processing, the

TF domain represents a prominent and practical development direction for near-term

quantum-enhanced or quantum-inspired technologies.
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A
Custom camera mechanical design
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Figure A.1: Mechanical drawing of the custom camera housing, including enclosure and shielding of
the image intensifier and the relay lens. The drawing is included only for illustrative purposes. The
scale has not been preserved and the annotations have not been translated. Page 1.
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Figure A.2: Mechanical drawing of the custom camera housing, including enclosure and shielding of
the image intensifier and the relay lens. The drawing is included only for illustrative purposes. The
scale has not been preserved and the annotations have not been translated. Page 2.
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Figure A.3: Mechanical drawing of the custom camera housing, including enclosure and shielding of
the image intensifier and the relay lens. The drawing is included only for illustrative purposes. The
scale has not been preserved and the annotations have not been translated. Page 3.
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B
Schematics of the image intensifier gating

driver
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Figure B.1: Schematics of a custom image intensifier high‐voltage gate driver. The drawing is in‐
cluded only for illustrative purposes. Page 1. 174



Figure B.2: Schematics of a custom image intensifier high‐voltage gate driver. The drawing is in‐
cluded only for illustrative purposes. Page 2. 175



Figure B.3: Schematics of a custom image intensifier high‐voltage gate driver. The drawing is in‐
cluded only for illustrative purposes. Page 3.
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